【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點,則異面直線AEBF所成角的余弦值為( 。

A. B. C. D.

【答案】D

【解析】

D為原點,DAx軸,DCy軸,DD1z軸,建立空間直角坐標(biāo)系,再利用向量法求出異面直線AEBF所成角的余弦值.

D為原點,DAx軸,DCy軸,DD1z軸,建立空間直角坐標(biāo)系,

設(shè)正方體ABCD﹣A1B1C1D1中棱長為2,E,F(xiàn)分別是C1D1,CC1的中點,

A(2,0,0),E(0,1,2),B(2,2,0),F(xiàn)(0,2,1),

=(﹣2,1,2),=(﹣2,0,1),

設(shè)異面直線AEBF所成角的平面角為θ,

cosθ= ,∴異面直線AEBF所成角的余弦值為

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一半徑為的水輪如圖所示,水輪圓心距離水面;已知水輪按逆時針做勻速轉(zhuǎn)動,每轉(zhuǎn)一圈,如果當(dāng)水輪上點從水中浮現(xiàn)時(圖中點)開始計算時間.

(1)以水輪所在平面與水面的交線為軸,以過點且與水面垂直的直線為軸,建立如圖所示的直角坐標(biāo)系,將點距離水面的高度表示為時間的函數(shù);

(2)點第一次到達最高點大約要多長時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) (a∈R,e為自然對數(shù)的底數(shù)),若曲線y=sinx上存在點(x0 , y0)使得f(f(y0))=y0 , 則a的取值范圍是(
A.[1,e]
B.[e1﹣1,1]
C.[1,e+1]
D.[e1﹣1,e+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的兩個焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點
(1)求橢圓C的離心率:
(2)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且 ,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于直線對稱,且圓心在軸上.

(1)求的標(biāo)準(zhǔn)方程;

(2)已經(jīng)動點在直線上,過點的兩條切線、,切點分別為.

①記四邊形的面積為,求的最小值;

②證明直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的正六邊形ABCDEF中,記以A為起點,其余頂點為終點的向量分別為 、 、 、 ;以D為起點,其余頂點為終點的向量分別為 、 、 、 .若m、M分別為( + + )( + + )的最小值、最大值,其中{i,j,k}{1,2,3,4,5},{r,s,t}{1,2,3,4,5},則m、M滿足(
A.m=0,M>0
B.m<0,M>0
C.m<0,M=0
D.m<0,M<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,內(nèi)角的平分線的長為7,且,則 _____;的長是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定常數(shù)c>0,定義函數(shù)f(x)=2|x+c+4|﹣|x+c|.?dāng)?shù)列a1 , a2 , a3 , …滿足an+1=f(an),n∈N*
(1)若a1=﹣c﹣2,求a2及a3;
(2)求證:對任意n∈N* , an+1﹣an≥c;
(3)是否存在a1 , 使得a1 , a2 , …,an , …成等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=sin(2x+φ)的圖象沿x軸向左平移 個單位后,得到一個偶函數(shù)的圖象,則φ的一個可能的值為(
A.
B.
C.0
D.-

查看答案和解析>>

同步練習(xí)冊答案