【題目】若數(shù)列同時(shí)滿足:①對(duì)于任意的正整數(shù), 恒成立;②對(duì)于給定的正整數(shù), 對(duì)于任意的正整數(shù)恒成立,則稱數(shù)列是“數(shù)列”.
(1)已知判斷數(shù)列是否為“數(shù)列”,并說明理由;
(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得, , , 成等差數(shù)列,證明: 是等差數(shù)列.
【答案】(1)是(2)見解析
【解析】試題分析:(1)根據(jù)定義驗(yàn)證兩個(gè)條件是否成立,由于函數(shù)為分段函數(shù),所以分奇偶分別驗(yàn)證(2)根據(jù)定義數(shù)列隔項(xiàng)成等差,再根據(jù)單調(diào)性確定公差相等,最后求各項(xiàng)通項(xiàng),根據(jù)通項(xiàng)關(guān)系得數(shù)列通項(xiàng),根據(jù)等差數(shù)列證結(jié)論
試題解析:(1)當(dāng)為奇數(shù)時(shí), ,所以.
.
當(dāng)為偶數(shù)時(shí), ,所以.
.
所以,數(shù)列是“數(shù)列”.
(2)由題意可得: ,
則數(shù)列, , , 是等差數(shù)列,設(shè)其公差為,
數(shù)列, , , 是等差數(shù)列,設(shè)其公差為,
數(shù)列, , , 是等差數(shù)列,設(shè)其公差為.
因?yàn)?/span>,所以,
所以,
所以①,②.
若,則當(dāng)時(shí),①不成立;
若,則當(dāng)時(shí),②不成立;
若,則①和②都成立,所以.
同理得: ,所以,記.
設(shè) ,
則
.
同理可得: ,所以.
所以是等差數(shù)列.
【另解】 ,
,
,
以上三式相加可得: ,所以,
所以 ,
,
,
所以,所以,
所以,數(shù)列是等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過兩點(diǎn),的直線的距離為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點(diǎn),求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線.
(1)求直線所過定點(diǎn)A的坐標(biāo);
(2)求直線被圓C所截得的弦長最短時(shí)直線的方程及最短弦長;
(3)已知點(diǎn)M(-3,4),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù), 試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個(gè)數(shù)列從第二項(xiàng)起,后一項(xiàng)與前一項(xiàng)的和相等且為同一常數(shù),這樣的數(shù)列叫“等和數(shù)列”,這個(gè)常數(shù)叫公和.給出下列命題:
①“等和數(shù)列”一定是常數(shù)數(shù)列;
②如果一個(gè)數(shù)列既是等差數(shù)列又是“等和數(shù)列”,則這個(gè)數(shù)列一定是常數(shù)列;
③如果一個(gè)數(shù)列既是等比數(shù)列又是“等和數(shù)列”,則這個(gè)數(shù)列一定是常數(shù)列;
④數(shù)列是“等和數(shù)列”且公和,則其前項(xiàng)之和;
其中,正確的命題為__________.(請(qǐng)?zhí)畛鏊姓_命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為2。
(1)求橢圓C的方程;
(2)橢圓C上是否存在一點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?若存在,求點(diǎn)P的坐標(biāo)與直線l的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 為正三角形,平面平面, , , .
(Ⅰ)求證:平面平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生參加4門學(xué)科的學(xué)業(yè)水平測(cè)試,每門得等級(jí)的概率都是,該學(xué)生各學(xué)科等級(jí)成績彼此獨(dú)立.規(guī)定:有一門學(xué)科獲等級(jí)加1分,有兩門學(xué)科獲等級(jí)加2分,有三門學(xué)科獲等級(jí)加3分,四門學(xué)科全獲等級(jí)則加5分,記表示該生的加分?jǐn)?shù), 表示該生獲等級(jí)的學(xué)科門數(shù)與未獲等級(jí)學(xué)科門數(shù)的差的絕對(duì)值.
(1)求的數(shù)學(xué)期望;
(2)求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當(dāng)a=3時(shí),求A∩B;
(2)若a>0,且A∩B=,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com