分析 由已知求得tanα的值.
(1)化弦為切可求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值;
(2)由tanα的值,再由同角三角函數(shù)的基本關(guān)系式求得cosα,則$cos2α+sin(α+\frac{π}{2})$的值可求.
解答 解:由3sin(π-α)=-2cos(π+α),得3sinα=2cosα,
∴tanα=$\frac{2}{3}$.
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{4tanα-2}{5+3tanα}=\frac{4×\frac{2}{3}-2}{5+3×\frac{2}{3}}=\frac{2}{21}$;
(2)∵tanα=$\frac{2}{3}$,∴$secα=\sqrt{1+ta{n}^{2}α}=\frac{\sqrt{13}}{3}$,則cosα=$\frac{3\sqrt{13}}{13}$.
∴$cos2α+sin(α+\frac{π}{2})$=cos2α+cosα=2cos2α+cosα-1=$2×(\frac{3\sqrt{13}}{13})^{2}+\frac{3\sqrt{13}}{13}-1$=$\frac{5+3\sqrt{13}}{13}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)的計(jì)算題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -x2-2sinx | B. | -x2+2sinx | C. | x2+2sinx | D. | x2-2sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 14 | B. | 15 | C. | 16 | D. | 17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com