已知函數(shù),
(1)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

(1) (-∞,0];(2) [3,+∞).

解析試題分析:(1),要滿(mǎn)足條件,知上恒成立,恒成立,可得;(2)由題知在區(qū)間(-1,1)不等式,即在(-1,1)上恒成立,得在(-1,1)的范圍,可得實(shí)數(shù)的范圍.
解:(1) ∵, 由條件,即在x∈R時(shí)恒成立.
, ∴,  ∴實(shí)數(shù)的取值范圍是(-∞,0].      6分
(2) 由條件 即在x∈(-1,1)時(shí)恒成立,
∵x∈(-1,1)時(shí), ∈[0,3), ∴只要即可,
∴實(shí)數(shù)的取值范圍是[3,+∞).                           12分
考點(diǎn):由導(dǎo)數(shù)求函數(shù)的單調(diào)性,不等式恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其中的導(dǎo)函數(shù).

(1)求的表達(dá)式;
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求曲線(xiàn)f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程;
(2)求經(jīng)過(guò)點(diǎn)A(2,-2)的曲線(xiàn)f(x)的切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)R),為其導(dǎo)函數(shù),且時(shí)有極小值
(1)求的單調(diào)遞減區(qū)間;
(2)若,,當(dāng)時(shí),對(duì)于任意x,的值至少有一個(gè)是正數(shù),求實(shí)數(shù)m的取值范圍;
(3)若不等式為正整數(shù))對(duì)任意正實(shí)數(shù)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)處取得極值-2.
(1)求函數(shù)的解析式;
(2)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)滿(mǎn)足如下條件:當(dāng)時(shí),,且對(duì)任
,都有.
(1)求函數(shù)的圖象在點(diǎn)處的切線(xiàn)方程;
(2)求當(dāng)時(shí),函數(shù)的解析式;
(3)是否存在,、、、,使得等式
成立?若存在就求出、、、、),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若時(shí)有極值,求實(shí)數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
若曲線(xiàn)處的切線(xiàn)與直線(xiàn)平行,求a的值;
當(dāng)時(shí),求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)
(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為,求的值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案