如圖,三棱柱A1B1C1-ABC的三視圖,主視圖和側(cè)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).
(I)求證:B1C平面AC1M;
(II)求證:平面AC1M⊥平面AA1B1B.
證明:(I)由三視圖可知三棱柱A1B1C1-ABC為直三棱柱,底面是等腰直角三角形且∠ACB=90°,連接A1C,設(shè)A1C∩AC1=O.連接MO,由題意可知A1O=CO,A1M=B1M,所以MOB1C.
∵M(jìn)O?平面AC1M,B1C?平面AC1M
∴B1C平面AC1M;
(II)∵A1C1=B1C1,點(diǎn)M是A1B1的中點(diǎn)
∴C1M⊥A1B1
∵平面A1B1C1⊥平面AA1B1B,平面A1B1C1∩平面AA1B1B=A1B1,
∴C1M⊥平面AA1B1B
∵C1M?平面AC1M
∴平面AC1M⊥平面AA1B1B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平面EAD⊥平面ABCD,△ADE是等邊三角形,ABCD是矩形,F(xiàn)是AB的中點(diǎn),G是AD的中點(diǎn),EC與平面ABCD成30°角.
(1)求證:EG⊥平面ABCD;
(2)若AD=2,求二面角E-FC-G的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AO⊥平面α,點(diǎn)O為垂足,BC?平面α,BC⊥OB,若∠ABO=
π
4
,∠COB=
π
6
,則cos∠BAC=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

作等腰直角三角形ABC的斜邊AB的中線CD,沿CD將△ABC折疊,使平面ACD⊥平面BCD,則折疊后AC與BC的夾角∠ACB的度數(shù)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD中為菱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點(diǎn)M在線段PC上,PM=tPC,試確定實(shí)數(shù)t的值,使得PA平面MQB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F(xiàn)、F1分別是AC,A1C1的中點(diǎn).
求證:
(1)平面AB1F1平面C1BF;
(2)平面AB1F1⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,菱形ABCD的邊長(zhǎng)為4,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對(duì)角線AC折起,得到三棱錐B-ACD,點(diǎn)M是棱BC的中點(diǎn),DM=2
2

(1)求證:OM平面ABD;
(2)求證:平面DOM⊥平面ABC;
(3)求三棱錐B-DOM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在圓錐PO中,已知PO=
2
,⊙O的直徑AB=2,C是
AB
的中點(diǎn),D為AC的中點(diǎn).
(Ⅰ)證明:平面POD⊥平面PAC;
(Ⅱ)求二面角B-PA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)、,動(dòng)點(diǎn),且滿足、、
成等差數(shù)列.
(1)求點(diǎn)的軌跡的方程;
(2)若曲線的方程為,過(guò)點(diǎn)的直線與曲線相切,
求直線被曲線截得的線段長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案