已知橢圓的方程為它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,離心率過橢圓的右焦點(diǎn)F作與坐標(biāo)軸不垂直的直線交橢圓于A、B兩點(diǎn).(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)求直線的方程

解:(Ⅰ)設(shè)橢圓的右焦點(diǎn)為(c,0)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4c/0/4irld.png" style="vertical-align:middle;" />的焦點(diǎn)坐標(biāo)為(2,0),所以c=2    ……………………2分
  則a2="5," b2=1  故橢圓方程為:……………4分
(Ⅱ)由(1)得F(2,0),設(shè)的方程為y=k(x-2)(k≠0)
 ………6分


  
…………………………10分

………………………14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓上的動(dòng)點(diǎn)到焦點(diǎn)距離的最小值為,以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),為橢圓上一點(diǎn), 且滿足
為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2).求過點(diǎn)P(1,2)的直線l的斜率k的取值范圍,使l與C只有一個(gè)交點(diǎn);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且
(Ⅰ)若過三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個(gè)焦點(diǎn),并于雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為,求拋物線的方程和雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(18分)如圖,直線與拋物線交于兩點(diǎn),與軸相交于點(diǎn),且.
(1)求證:點(diǎn)的坐標(biāo)為;
(2)求證:;
(3)求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(本題滿分14分)已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在X軸上,橢圓短半軸長為1,動(dòng)點(diǎn)  在直線上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以線段OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作直線OM的垂線與以線段OM為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知橢圓C:=1(a>b>0)的離心率為,短軸一
個(gè)端點(diǎn)到右焦點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動(dòng)點(diǎn)P引圓O:的兩條切線PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線互相垂直?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案