精英家教網 > 高中數學 > 題目詳情
已知命題p:?x∈R,cosx=
5
4
;命題q:?x∈R,x2-x+1>0.則下列結論正確的是(  )
A、命題p∨q是假命題
B、命題p∧q是真命題
C、命題(¬p)∧(¬q)是真命題
D、命題(¬p)∨(¬q)是真命題
考點:復合命題的真假
專題:簡易邏輯
分析:本題考查復合命題的真假判定,解決的辦法是先判斷組成復合命題的簡單命題的真假,再根據真值表進行判斷.
解答:解:命題p:∵cosx≤1,
∴不存在x,使得cosx=
5
4
成立,
∴命題p是假命題;
命題q:∵x2-x+1=(x-
1
2
)2+
3
4
>0

∴命題q是真命題;
∴¬p是真命題,¬q是假命題;
∴¬p∨¬q是命題;
故選D
點評:本題考查的知識點是復合命題的真假判定,屬于基礎題目
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
1
2
cos(ωx+φ)+1(ω>0)的圖象的一條對稱軸為直線x=
π
3
,且f(
π
12
)=1,則ω的最小值為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數學 來源: 題型:

在等差數列{an}中,a1=-2012,其前n項和為Sn,若
S2012
2012
-
S10
10
=2002
,則S2014的值等于(  )
A、2011B、-2012
C、2014D、-2013

查看答案和解析>>

科目:高中數學 來源: 題型:

已知實數x,y滿足
2x-y+6≥0
x+y≥0
x≤2
,若目標函數z=-mx+y的最大值為-2m+10,最小值為-2m-2,則實數m的取值范圍是( 。
A、[-1,2]
B、[-2,1]
C、[2,3]
D、[-1,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

原命題為“若z1,z2互為共軛復數,則|z1|=|z2|”,關于其逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是( 。
A、真,假,真B、假,假,真C、真,真,假D、假,假,假

查看答案和解析>>

科目:高中數學 來源: 題型:

命題“對任意x∈R,都有x3>x2”的否定是( 。
A、存在x0∈R,使得x03>x02B、不存在x0∈R,使得x03>x02C、存在x0∈R,使得x03≤x02D、對任意x∈R,都有x3≤x2

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題錯誤的是( 。
A、若命題P:?x0∈R,x02-x0+1≥0,則¬P:?x∈R,x2-x+1<0
B、若命題p∨q為真,則p∧q為真
C、一組數據1,2,3,3,4,5的平均數、眾數、中位數都相同
D、根據具有線性相關關系的兩個變量的統計數據所得的回歸直線方程為
y
=
a
+
b
x中,若
b
=2,
.
x
=1,
.
y
=3,則
a
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

設W是由一平面內的n(n≥3)個向量組成的集合,若
a
∈W,且
a
的模不小于W中除
a
外的所有向量和的模,則稱
a
是W的極大向量,下列命題:
①若W中每個向量方向都相同,則W中必存在一個極大向量;
②給定平面內兩個不共線向量
a
、
b
,在該平面內總存在唯一的平面向量
c
,使得W={
a
b
,
c
}中的每個元素都是極大向量;
③若W1={
a1
a2
,
a3
}、W2={
b1
,
b2
,
b3
}中的中的每個元素都是極大向量,則W1∪W2中的每一個元素也都是極大向量.
其中真命題的個數是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線ax+by+c=0與拋物線y2=2x交于P,Q兩點,F為拋物線的焦點,直線PF,QF分別交拋物線于點M,N,則直線MN的方程為( 。
A、4cx-2by+a=0B、ax-2by+4c=0C、4cx+2by+a=0D、ax+2by+4c=0

查看答案和解析>>

同步練習冊答案