【題目】已知橢圓的左、右頂點為,,橢圓上任意一點,滿足,且橢圓過點.
(1)求橢圓的標準方程;
(2)設是軌跡上的兩個動點,線段的中點在直線 (為參數(shù))上,線段的中垂線與交于兩點,是否存在點,使以為直徑的圓經(jīng)過點,若存在,求出點坐標,若不存在,請說明理由.
【答案】(1) (2) 存在點符合條件,坐標為.
【解析】
(1)設,,,根據(jù)題意列出方程,聯(lián)立求解即可;
(2)直線參數(shù)方程轉(zhuǎn)換為普通方程,當直線垂直于軸時,三點共線不符合題意;當直線不垂直與軸時,設存在點,直線的斜率為,,,,,根據(jù)題意利用圓的性質(zhì)和垂直向量點積為0,列出方程求解可得答案.
解:(1)設,,,則 ,
,
橢圓過點, ②
聯(lián)立①②解得:
所求橢圓方程為:
(2)將直線的參數(shù)方程: (為參數(shù))化為普通方程,
當直線垂直于軸時,直線方程為:,
此時 ,與點三點共線,不合題意;
當直線不垂直與軸時,設存在點,直線的斜率為,,,,
由 得:,則 ,故
此時,直線斜率為,的直線方程為,即
聯(lián)立,整理得:
所以,
由題意,于是
,因為在橢圓內(nèi),,符合題意;
綜上,存在點符合條件,坐標為.
科目:高中數(shù)學 來源: 題型:
【題目】在甲地,隨著人們生活水平的不斷提高,進入電影院看電影逐漸成為老百姓的一種娛樂方式.我們把習慣進入電影院看電影的人簡稱為“有習慣”的人,否則稱為“無習慣的人”.某電影院在甲地隨機調(diào)查了100位年齡在15歲到75歲的市民,他們的年齡的頻數(shù)分布和“有習慣”的人數(shù)如下表:
(1)以年齡45歲為分界點,請根據(jù)100個樣本數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有的把握認為“有習慣”的人與年齡有關(guān);
(2)已知甲地從15歲到75歲的市民大約有11萬人,以頻率估計概率,若每張電影票定價為元,則在“有習慣”的人中約有的人會買票看電影(為常數(shù)).已知票價定為30元的某電影,票房達到了 69.3萬元.某新影片要上映,電影院若將電影票定價為25元,那么該影片票房估計能達到多少萬元?
參考公式:,其中.
參考臨界值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點G(x,y)滿足
(1)求動點G的軌跡C的方程;
(2)過點Q(1,1)作直線L與曲線交于不同的兩點,且線段中點恰好為Q.求的面積;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若是的一條切線,求的值;
(3)已知,為整數(shù),若對任意,都有恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠抽取了一臺設備在一段時間內(nèi)生產(chǎn)的一批產(chǎn)品,測量一項質(zhì)量指標值,繪制了如圖所示的頻率分布直方圖.
(1)計算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(2)根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這臺設備在正常狀態(tài)下生產(chǎn)的產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差.任取一個產(chǎn)品,記其質(zhì)量指標值為.若,則認為該產(chǎn)品為一等品;,則認為該產(chǎn)品為二等品;若,則認為該產(chǎn)品為不合格品.已知設備正常狀態(tài)下每天生產(chǎn)這種產(chǎn)品1000個.
(i)用樣本估計總體,問該工廠一天生產(chǎn)的產(chǎn)品中不合格品是否超過?
(ii)某公司向該工廠推出以舊換新活動,補足50萬元即可用設備換得生產(chǎn)相同產(chǎn)品的改進設備.經(jīng)測試,設備正常狀態(tài)下每天生產(chǎn)產(chǎn)品1200個,生產(chǎn)的產(chǎn)品為一等品的概率是,二等品的概率是,不合格品的概率是.若工廠生產(chǎn)一個一等品可獲得利潤50元,生產(chǎn)一個二等品可獲得利潤30元,生產(chǎn)一個不合格品虧損40元,試為工廠做出決策,是否需要換購設備?
參考數(shù)據(jù):①;②;③,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個極值點,求實數(shù)a的取值范圍;
(2)若對任意都恒成立,求證:a的最大值大于8.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】改革開放40年來,體育產(chǎn)業(yè)蓬勃發(fā)展反映了“健康中國”理念的普及.下圖是我國2006年至2016年體育產(chǎn)業(yè)年增加值及年增速圖.其中條形圖表示體育產(chǎn)業(yè)年增加值(單位:億元),折線圖為體育產(chǎn)業(yè)年增長率(%).
(Ⅰ)從2007年至2016年這十年中隨機選出一年,求該年體育產(chǎn)業(yè)年增加值比前一年多億元以上的概率;
(Ⅱ)從2007年至2011年這五年中隨機選出兩年,求至少有一年體育產(chǎn)業(yè)年增長率超過25%的概率;
(Ⅲ)由圖判斷,從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增長率方差最大?從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增加值方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)氣象局統(tǒng)計,某市2019年從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣.國際上通常用環(huán)境空氣質(zhì)量指數(shù)(AQI)來描述污染狀況,下表是某氣象觀測點記錄的連續(xù)4天里,該市AQI指數(shù)與當天的空氣水平可見度的情況.
AQI指數(shù) | 900 | 700 | 300 | 100 |
空氣水平可見度 | 0.5 | 3.5 | 6.5 | 9.5 |
(1)設,根據(jù)表中的數(shù)據(jù),求出關(guān)于的回歸方程;
(2)若某天該市AQT指數(shù),那么當天空氣水平可見度大約為多少?
附:參考數(shù)據(jù):,.
參考公式:線性回歸力程中,,,其中為樣本平均數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com