分析:(1)利用導數(shù)求極值,由x=0為f(x)的極值點得,f′(0)=ae
0=0,即得a的值;
(2)由不等式
f(x)>(x-1)(x2+x+1)得,(x-1)[e
x-(
x
2+x+1)]>0,利用導數(shù)判斷函數(shù)g(x)=)e
x-(
x
2+x+1)的單調(diào)性,進而得證;
(3)由導數(shù)與函數(shù)單調(diào)性的關系,通過討論求得a的范圍.
解答:
解:(Ⅰ)因為f(x)=[ax
2+(a-1)
2x+a-(a-1)
2]e
x所以f′(x)=[2ax+(a-1)
2]e
x+[ax
2+(a-1)
2x+a-(a-1)
2]e
x=[ax
2+(a
2+1)x+a]e
x--------(2分)
因為x=0為f(x)的極值點,所以由f′(0)=ae
0=0,解得a=0----------------------------(3分)
檢驗,當a=0時,f′(x)=xe
x,當x<0時,f′(x)<0,當x>0時,f′(x)>0,
所以x=0為f(x)的極值點,故a=0.----------------------------------------(4分)
(Ⅱ) 當a=0時,不等式不等式
f(x)>(x-1)(x2+x+1)?(x-1)e
x>(x-1)(
x
2+x+1),
整理得(x-1)[e
x-(
x
2+x+1)]>0,
即
或
------------(6分)
令g(x)=)e
x-(
x
2+x+1),h(x)=g′(x)=e
x-(x+1),h′(x)=e
x-1,
當x>0時,h′(x)=e
x-1>0,當x<0時,h′(x)=e
x-1<0,
所以h(x)在(-∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增,
所以h(x)>h(0)=0,即g′(x)>0,
所以g(x)在R上單調(diào)遞增,而g(0)=0;
故e
x-(
x
2+x+1)>0?x>0;e
x-(
x
2+x+1)<0?x<0,
所以原不等式的解集為{x|x<0或x>1};-------------------------(9分)
(Ⅲ) 當a≥0時,f′(x)=[ax
2+(a
2+1)x+a]e
x,
因為x∈(1,2),所以f′(x)>0,所以f(x)在(1,2)上是增函數(shù).----------(11分)
當a<0時,f′(x)=a(x+a)(x+
)•e
x,x∈(1,2)時,f(x)是增函數(shù),f′(x)>0.
①若a<-1,則f′(x)=a(x+a)(x+
)•e
x>0⇒x∈(-
,-a),由(1,2)⊆(-
,-a)得a≤-2;
②若-1<a<0,則f′(x)=a(x+a)(x+
)•e
x>0⇒x∈(-a,-
),由(1,2)⊆(-a,-
)得-
≤a<0.
③若a=-1,f′(x)=-(x-1)
2•e
x≤0,不合題意,舍去.
綜上可得,實數(shù)a的取值范圍是(-∞,-2]∪[-
,+∞)----------------(14分)