【題目】如圖所示,在等腰梯形中,,,為的中點,將與分別沿向上翻折,使重合,則形成的三棱錐的外接球的表面積為_______.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為
1 | 2 | 3 | 4 | 5 | |
0.2 | 0.3 | 0.3 | 0.1 | 0.1 |
商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為300元;分4期或5期付款,其利潤為400元,表示經(jīng)銷一件該商品的利潤.
(1)求事件:“購買該商品的3位顧客中,至少有1位采用期付款”的概率;
(2)求的分布列、期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動點為橢圓外一點,且點到橢圓的兩條切線相互垂直,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0、A1、A2…、A5,所有尺寸的紙張長寬比都相同.②在A系列紙中,前一個序號的紙張以兩條長邊中點連線為折線對折裁剪分開后,可以得到兩張后面序號大小的紙,比如1張A0紙對裁后可以得到2張A1紙,1張A1紙對裁可以得到2張A2紙,依此類推.這是因為A系列紙張的長寬比為:1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長度為( 。
A.厘米B.厘米C.厘米D.厘米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,的線性回歸直線方程為,且,之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的為
A.變量,之間呈現(xiàn)正相關(guān)關(guān)系B.可以預(yù)測,當(dāng)時,
C.D.由表格數(shù)據(jù)可知,該回歸直線必過點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某超市,隨機調(diào)查了100名顧客購物時使用手機支付的情況,得到如下的列聯(lián)表,已知從其中使用手機支付的人群中隨機抽取1人,抽到青年的概率為.
青年 | 中老年 | 合計 | |
使用手機支付 | 60 | ||
不使用手機支付 | 28 | ||
合計 | 100 |
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有99.9%的把握認為“超市購物用手機支付與年齡有關(guān)”.
(2)現(xiàn)按照“使用手機支付”和“不使用手機支付”進行分層抽樣,從這100名顧客中抽取容量為5的樣本,求“從樣本中任選3人,則3人中至少2人使用手機支付”的概率.
(其中 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當(dāng)△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸,離心率為,且長軸長是短軸長的倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓左焦點的直線交于, 兩點,若對滿足條件的任意直線,不等式 恒成立,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com