【題目】葫蘆島市某高中進行一項調(diào)查:2012年至2016年本校學(xué)生人均年求學(xué)花銷(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號 | 1 | 2 | 3 | 4 | 5 |
年求學(xué)花銷 | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2012年至2016年本校學(xué)生人均年求學(xué)花銷的變化情況,并預(yù)測該地區(qū)2017年本校學(xué)生人均年求學(xué)花銷情況.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,經(jīng)過原點的兩直線滿足,且交圓于不同兩點交, 圓于不同兩點,記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和為,且,令.
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)若,用數(shù)學(xué)歸納法證明是18的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點P到定點F(1,0)和到直線x=2的距離之比為,設(shè)動點P的軌跡為曲線E,過點F作垂直于x軸的直線與曲線E相交于A,B兩點,直線l:y=mx+n與曲線E交于C,D兩點,與線段AB相交于一點(與A,B不重合).
(1)求曲線E的方程;
(2)當(dāng)直線l與圓x2+y2=1相切時,四邊形ABCD的面積是否有最大值?若有,求出其最大值及對應(yīng)的直線l的方程;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N*,點(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.
(1)求r的值;
(2)當(dāng)b=2時,記bn=2(log2an+1)(n∈N*),證明:對任意的n∈N*,不等式··…·>成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某只股票經(jīng)歷了10個跌停(下跌10%)后需再經(jīng)過10個漲停(上漲10%)就可以回到原來的凈值;
③某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部數(shù)學(xué)平均分分別是a、b,則這兩個級部的數(shù)學(xué)平均分為+;
④某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從1到800進行編號.已知從497~513這16個數(shù)中取得的學(xué)生編號是503,則初始在第1小組1~16中隨機抽到的學(xué)生編號是7.
其中真命題的個數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面平面,且四邊形為矩形,四邊形為直角梯形, , , , .
(1)求證: 平面;
(2)求直線與平面所成角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有6名男醫(yī)生,4名女醫(yī)生.
(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個不同地區(qū)去巡回醫(yī)療,共有多少種不同方法?
(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,則有多少種不同分法?若將這兩組醫(yī)生分派到兩地去,并且每組選出正副組長兩人,又有多少種不同方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com