已知是橢圓和雙曲線的公共頂

點(diǎn)。是雙曲線上的動(dòng)點(diǎn),是橢圓上的動(dòng)點(diǎn)(、都異于),且滿足,其中,設(shè)直線、、的斜率 分別記為, ,則        

 

【答案】

-5

【解析】

試題分析:∵A,B是橢圓和雙曲線的公共頂點(diǎn),

∴(不妨設(shè))A(-a,0),B(a,0).

設(shè)P(x1,y1),M(x2,y2),∵,其中λ∈R,

∴(x1+a,y1)+(x1-a,y1)=λ[(x2+a,y2)+(x2-a,y2)],化為x1y2=x2y1

∵P、M都異于A、B,∴y1≠0,y2≠0.∴

由k1+k2==5,化為(*)

又∵=1,∴,代入(*)化為

k3+k4=,又=1,

,

∴k3+k4=-=-5.

故答案為-5.

考點(diǎn):橢圓、雙曲線的標(biāo)準(zhǔn)方程及幾何性質(zhì),平面向量的坐標(biāo)運(yùn)算,直線的斜率及其坐標(biāo)運(yùn)算。

點(diǎn)評(píng):難題,熟練掌握點(diǎn)在曲線上的意義、雙曲線和橢圓的方程、向量的坐標(biāo)運(yùn)算、斜率的計(jì)算公式是解題的關(guān)鍵,同時(shí)本題計(jì)算能力要求較高。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
m
+
y2
n
=1與雙曲線
x2
p
-
y2
q
=1(m,n,p,q∈R+)有共同的焦點(diǎn)F1、F2,P是橢圓和雙曲線的一個(gè)交點(diǎn),則|PF1|•|PF2|=
m-p
m-p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
m
+
y2
n
=1
(m>n>0)與雙曲線
x2
p
-
y2
q
=1(p>0,q>0)有共同的焦點(diǎn)F1、F2,P是橢圓和雙曲線的一個(gè)交點(diǎn),則|
PF1
|•|
PF2
|等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓+=1與雙曲線=1(m,n,p,q∈R+)有共同的焦點(diǎn)F1、F2,P是橢圓和雙曲線的一個(gè)交點(diǎn),則|PF1|·|PF2|=      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高三5月高考模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知是橢圓和雙曲線的公共頂點(diǎn)。是雙曲線上的動(dòng)點(diǎn),是橢圓上的動(dòng)點(diǎn)(都異于、),且滿足,其中,設(shè)直線、、的斜率分別記為, ,則              

 

查看答案和解析>>

同步練習(xí)冊(cè)答案