【題目】設(shè)x∈R,定義符號函數(shù)sgnx= ,則(
A.|x|=x|sgnx|
B.|x|=xsgn|x|
C.|x|=|x|sgnx
D.|x|=xsgnx

【答案】D
【解析】解:對于選項A,右邊=x|sgnx|= ,而左邊=|x|= ,顯然不正確;
對于選項B,右邊=xsgn|x|= ,而左邊=|x|= ,顯然不正確;
對于選項C,右邊=|x|sgnx= ,而左邊=|x|= ,顯然不正確;
對于選項D,右邊=xsgnx= ,而左邊=|x|= ,顯然正確;
故選:D.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的定義域及其求法和函數(shù)的值域的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C: (a>b>0)的離心率為,橢圓C截直線y=1所得線段的長度為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)動直線l:y=kx+m(m≠0)交橢圓CA,B兩點,交y軸于點M.點NM關(guān)于O的對稱點,⊙N的半徑為|NO|. 設(shè)DAB的中點,DE,DF與⊙N分別相切于點E,F,求EDF的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直棱柱ABC﹣A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB= AB. (Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D﹣A1C﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a>0,f(x)= + 是R上的偶函數(shù).
(1)求a的值;
(2)證明f(x)在(0,+∞)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足對任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒為0,
(1)求f(1)和f(﹣1)的值;
(2)試判斷f(x)的奇偶性,并加以證明;
(3)若x≥0時f(x)為增函數(shù),求滿足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年10月,繼微信支付對提現(xiàn)轉(zhuǎn)賬收費后,支付寶也開始對提現(xiàn)轉(zhuǎn)賬收費,隨著這兩大目前用戶使用粘度最高的第三方支付開始收費,業(yè)內(nèi)人士分析,部分對價格敏感的用戶或?qū)⒒亓髦羵鹘y(tǒng)銀行體系,某調(diào)查機構(gòu)對此進行調(diào)查,并從參與調(diào)查的數(shù)萬名支付寶用戶中隨機選取200人,把這200人分為3類:認為使用支付寶方便,仍使用支付寶提現(xiàn)轉(zhuǎn)賬的用戶稱為“類用戶”;根據(jù)提現(xiàn)轉(zhuǎn)賬的多少確定是否使用支付寶的用戶稱為“類用戶”;提前將支付寶賬戶內(nèi)的資金全部提現(xiàn),以后轉(zhuǎn)賬全部通過銀行的用戶稱為“類用戶”,各類用戶的人數(shù)如圖所示:

同時把這200人按年齡分為青年人組與中老年人組,制成如圖所示的列聯(lián)表:

類用戶

類用戶

合計

青年

20

中老年

40

合計

200

(Ⅰ)完成列聯(lián)表并判斷是否有99.5%的把握認為“類用戶與年齡有關(guān)”;

(Ⅱ)從這200人中按類用戶、類用戶、類用戶進行分層抽樣,從中抽取10人,再從這10人中隨機抽取4人,求在這4人中類用戶、類用戶、類用戶均存在的概率;

(Ⅲ)把頻率作為概率,從支付寶所有用戶(人數(shù)很多)中隨機抽取3人,用表示所選3人中類用戶的人數(shù),求的分布列與期望.

附:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).以原點為極點, 軸的正半軸為極軸建立極坐標系,點的極坐標方程為.

(1)求點的直角坐標,并求曲線的普通方程;

(2)設(shè)直線與曲線的兩個交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,若 且f(x)在區(qū)間 上有最小值,無最大值,則ω的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知右焦點為的橢圓關(guān)于直線對稱的圖形過坐標原點.

(1)求橢圓的方程;

(2)過點且不垂直于軸的直線與橢圓交于兩點,點關(guān)于軸的對稱點為.證明:直線軸的交點為.

查看答案和解析>>

同步練習冊答案