過(guò)橢圓中心的直線與橢圓交于A、B兩點(diǎn),右焦點(diǎn)為F2,則△ABF2
 
的最大面積是(   )                                                                                                   
A.                         B.                         C.                  D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓的弦被點(diǎn)(4,2)平分,則此弦所在的直線方程為(  )
A.x-2y="0" B.x+2y-4="0" C.2x+13y-14="0" D.x+2y-8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜
率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓與一等軸雙曲線相交,是其中一個(gè)交點(diǎn),并且雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),雙曲線的焦點(diǎn)是橢圓的頂點(diǎn)的周長(zhǎng)為.設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓G與雙曲線有相同的焦點(diǎn),且過(guò)點(diǎn)
(1)求橢圓G的方程
(2)設(shè)、是橢圓G的左焦點(diǎn)和右焦點(diǎn),過(guò)的直線與橢圓G相交于A、B兩點(diǎn),請(qǐng)問(wèn)的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程,若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的左、右焦點(diǎn)為,過(guò)點(diǎn)斜率為正數(shù)的直線交兩點(diǎn),且成等差數(shù)列。
(Ⅰ)求的離心率;
(Ⅱ)若直線y=kx(k<0)與交于C、D兩點(diǎn),求使四邊形ABCD面積S最大時(shí)k的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本題滿分12分)
已知橢圓方程為,斜率為的直線過(guò)橢圓的上焦點(diǎn)且與橢圓相交于,兩點(diǎn),線段的垂直平分線與軸相交于點(diǎn)
(Ⅰ)求的取值范圍;
(Ⅱ)求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)橢圓,的左焦點(diǎn),作軸的垂線交橢圓于點(diǎn),為右焦點(diǎn)。若,則橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(18分)已知橢圓C:,在曲線C上是否存在不同兩點(diǎn)A、B關(guān)于直線(m為常數(shù))對(duì)稱?若存在,求出滿足的條件;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案