解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞).
f′(x)=1-
=
,
則f′(x)<0時(shí),0<x<1,當(dāng)f′(x)>0時(shí),x>1,
所以f(x)的減區(qū)間是(0,1),增區(qū)間是(1,+∞).
(Ⅱ)由題意知,g(x)=f(2-x)=2-x-ln(2-x),
令F(x)=f(x)-g(x)═2x-2-lnx+ln(2-x),
F′(x)=2-
-
=
=
.
當(dāng)1<x<2時(shí),F(xiàn)′(x)<0,即F(x)是減函數(shù).
F(x)<F(1)=0,
所以f(x)<g(x).
(Ⅲ)證明:(1)若(x
1-1)(x
2-1)=0,
由(Ⅰ)及f(x
1)=f(x
2),則x
1=x
2=1,與x
1≠x
2矛盾.
(2)若(x
1-1)(x
2-1)>0,由(Ⅰ)及f(x
1)=f(x
2),得x
1=x
2,與x
1≠x
2矛盾.
根據(jù)(1)(2)得(x
1-1)(x
2-1)<0,不妨設(shè)x
11.
當(dāng)1<x
2<2時(shí),由(Ⅱ)可知f(x
2)<g(x
2),而g(x
2)=f(2-x
2),
所以f(x
2)<f(2-x
2),從而f(x
1)<f(2-x
2),因?yàn)閤
2>1,所以2-x
2<1,
又由(Ⅰ)可知函數(shù)f(x)在區(qū)間(0,1)內(nèi)為減函數(shù),所以x
1>2-x
2,即x
1+x
2>2.
分析:(Ⅰ)求導(dǎo)數(shù)f′(x),在定義域內(nèi)解不等式f′(x)<0,f′(x)>0即可;
(Ⅱ)由對(duì)稱(chēng)關(guān)系求出g(x),構(gòu)造函數(shù)F(x)=f(x)-g(x),用導(dǎo)數(shù)證明當(dāng)1<x<2時(shí),F(xiàn)(x)<0即可;
(Ⅲ)分(x
1-1)(x
2-1)=0,(x
1-1)(x
2-1)>0,(x
1-1)(x
2-1)<0三種情況討論,借助(Ⅰ)(Ⅱ)問(wèn)結(jié)論可證明.
點(diǎn)評(píng):本題考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、證明不等式問(wèn)題,考查分析問(wèn)題解決問(wèn)題的能力,綜合性較強(qiáng).