在矩形ABCD中,AB = 4,BC = 3,沿對角線AC把矩形折成二面角D-AC-B,并且D點(diǎn)在平面ABC內(nèi)的射影落在AB上.若在四面體D-ABC內(nèi)有一球,當(dāng)球的體積最大時(shí),球的半徑是         .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一條直線和三角形的兩邊同時(shí)垂直,則這條直線和三角形的第三邊的位置關(guān)系是(   )
A.平行B.垂直C.相交不垂直D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在直角梯形中,,,,分別是的中點(diǎn),現(xiàn)將沿折起,使平面平面(如圖2),且所得到的四棱錐的正視圖、側(cè)視圖、俯視圖的面積總和為8.
⑴求點(diǎn)到平面的距離;
⑵求二面角的大小的夾角的余弦值;
⑶在線段上確定一點(diǎn),使平面,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

必做題, 本小題10分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.
(1)當(dāng)時(shí),求直線AP與平面BDD1B1所成角的度數(shù);
(2)在線段上是否存在一個(gè)定點(diǎn),使得對任意的m,⊥AP,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐A—BCDE中,底面BCDE為矩形,AB=AC,BC=2,CD=1,并且側(cè)面底面BCDE。
(1)取CD的中點(diǎn)為F,AE的中點(diǎn)為G,證明:FG//面ABC;
(2)試在線段BC上確定點(diǎn)M,使得AEDM,并加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面是矩形,,點(diǎn)的中點(diǎn),點(diǎn)在邊上移動(dòng)。
1)點(diǎn)的中點(diǎn)時(shí),試判斷與平面的位置關(guān)系,并說明理由。
2)證明:無論點(diǎn)在邊的何處,都有
3)當(dāng)等于何值時(shí),與平面所成角的大小為.(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)如圖,已知四棱錐
底面為直角梯形,,,,
,M是的中點(diǎn)。
(1)  證明:;
(2)  求異面直線所成的角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖所示的空間幾何體,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為.且點(diǎn)E在平面ABC上的射影落在的平分線上。

(I)求證:DE//平面ABC;
(II)求二面角E—BC—A的余弦;
(III)求多面體ABCDE的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知α,β是平面,m,n是直線。下列命題中不正確的是 (  )          
A.若m∥n,m⊥α,則n⊥αB.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥βD.若m⊥α,,則α⊥β

查看答案和解析>>

同步練習(xí)冊答案