【題目】將函數(shù)y=sin2x的圖象向左平移 個單位,再向上平移1個單位,所得圖象的函數(shù)解析式是( )
A.y=cos2x
B.y=2cos2x
C.
D.y=2sin2x
【答案】B
【解析】解:令y=f(x)=sin2x,
則f(x+ )=sin2(x+ )=cos2x,
再將f(x+ )的圖象向上平移1個單位,所得圖象的函數(shù)解析式是y=cos2x+1=2cos2x,
故選:B.
【考點精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿a1=a,a2=b,3an+2﹣5an+1+2an=0(n≥0,n∈N),求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中內(nèi)角A、B、C的對邊分別為a、b、c,且2acosC=2b﹣c.
(Ⅰ)求角A的大;
(Ⅱ)如果a=1,求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 sinxcosx+1﹣2sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的 ,把所得到的圖象再向左平移 單位,得到的函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間 上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 asinA=( b﹣c)sinB+( c﹣b)sinC.
(1)求角A的大;
(2)若a= ,cosB= ,D為AC的中點,求BD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( , ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com