已知平面向量的夾角為,且,在中,,D為BC的中點(diǎn),則( )
A.2 B.4 C.6 D.8
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)=
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè),當(dāng)時(shí),,求的最大值;
(Ⅲ)已知,估計(jì)ln2的近似值(精確到0.001)
請(qǐng)考生在第22、23、24題中任選一題做答,如果多做,同按所做的第一題計(jì)分,做答時(shí)請(qǐng)寫清題號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分)。設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立。
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了。請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州地區(qū)7校高三上學(xué)期期末模擬聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)已知數(shù)列滿足且。
(1)求的值;
(2)是否存在一個(gè)實(shí)數(shù),使得且為等差數(shù)列?若存在,求出的值;如不存在,請(qǐng)說明理由;
(3)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州地區(qū)7校高三上學(xué)期期末模擬聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知定義在R上的函數(shù),滿足,且對(duì)任意的都有,則(7)=____________; .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州地區(qū)7校高三上學(xué)期期末模擬聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)a = 30.5, b= log32, c=cos2,則( )
A.c<b<a B.c<a<b C.a(chǎn)<b<c D.b<c<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州地區(qū)7校高三上學(xué)期期末模擬聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題
若實(shí)數(shù)x,y滿足,則的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年穩(wěn)派新課程高三2月精品文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,為圓O的直徑,是圓上不同于,的動(dòng)點(diǎn),四邊形為矩形,且,平面平面.
(1)求證:平面.
(2)當(dāng)點(diǎn)在的什么位置時(shí),四棱錐的體積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年穩(wěn)派新課程高三2月精品理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)時(shí)虛數(shù)單位,若復(fù)數(shù)為純虛數(shù),則實(shí)數(shù)的值為( )
A.2 B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com