【題目】已知函數(shù).(其中常數(shù),是自然對(duì)數(shù)的底數(shù))

1)若,求函數(shù)的極值點(diǎn)個(gè)數(shù);

2)若函數(shù)在區(qū)間上不單調(diào),證明:.

【答案】1)見解析;(2)見解析.

【解析】

1)求導(dǎo)后,分討論即可得出結(jié)論;

2)結(jié)合題意分析可知,由可證,進(jìn)而得出結(jié)論.

解:(1)易知

,則,函數(shù)上單調(diào)遞增,

函數(shù)無極值點(diǎn),即此時(shí)極值點(diǎn)個(gè)數(shù)為0;

,易知函數(shù)的圖象與的圖象有唯一交點(diǎn),

當(dāng)時(shí),,函數(shù)上單調(diào)遞減,

當(dāng),時(shí),,函數(shù),上單調(diào)遞增,

函數(shù)有較小值點(diǎn),即此時(shí)函數(shù)的極值點(diǎn)個(gè)數(shù)為1;

綜上所述,當(dāng)時(shí),函數(shù)的極值點(diǎn)個(gè)數(shù)為0

當(dāng)時(shí),函數(shù)的極值點(diǎn)個(gè)數(shù)為1;

2)證明:函數(shù)在區(qū)間上不單調(diào),

存在為函數(shù)的極值點(diǎn),

由(1)可知,,且,即,

兩邊取自然對(duì)數(shù)得,即,

要證,不妨考慮證,

又易知,

,即,

,

,即

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項(xiàng)和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項(xiàng)是D.數(shù)列的最大項(xiàng)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),.

1)當(dāng)時(shí),求函數(shù)的極小值;

2)若當(dāng)時(shí),關(guān)于的方程有且只有一個(gè)實(shí)數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),則稱函數(shù)是“雙奇函數(shù)”.函數(shù)

1)若函數(shù)是“雙奇函數(shù)”,求實(shí)數(shù)的值;

2)若時(shí),討論函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)fx)=(1x2)(x2+bx+c).

1)如果fx)的圖象關(guān)于x2對(duì)稱,求2b+c的值;

2)若x[1,1],記|fx|的最大值為Mb,c),當(dāng)b、c變化時(shí),求Mb,c)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解高一新生的體能情況,在入學(xué)后不久,組織了一次體能測(cè)試,按成績分為優(yōu)秀、良好、一般、較差四個(gè)檔次.現(xiàn)隨機(jī)抽取120名學(xué)生的成績,其條形圖如下:

1)將優(yōu)秀、良好、一般歸為合格,較差歸為不合格,試根據(jù)條形圖完成下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)生的成績與性別有關(guān).

合格

不合格

合計(jì)

男生

女生

合計(jì)

2)學(xué)校為了解學(xué)生以前參加課外活動(dòng)的情況,利用分層抽樣的方法從120名學(xué)生中抽取24名學(xué)生參加一個(gè)座談會(huì).

①座談會(huì)上抽取2名學(xué)生匯報(bào)以前參加課外活動(dòng)的情況,求恰好抽到測(cè)試成績一個(gè)優(yōu)秀與一個(gè)較差的學(xué)生的概率;

②為全面提高學(xué)生的體能,學(xué)校專門安排專職教師對(duì)全校測(cè)試成績較差的學(xué)生在課外活動(dòng)時(shí)進(jìn)行專項(xiàng)訓(xùn)練,通過一段時(shí)間的訓(xùn)陳后,測(cè)試合格率達(dá)到了.若某班有4名學(xué)生參加這個(gè)專項(xiàng)訓(xùn)陳,求訓(xùn)練后測(cè)試合格人數(shù)ξ的分布列與數(shù)學(xué)期望.

附:K2,其中na+b+c+d

PK2k0

0.150

0.100

0.050

0.025

0.010

0.005

k0

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)是橢圓上的點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知斜率存在又不經(jīng)過原點(diǎn)的直線與圓相切,且與橢圓交于兩點(diǎn).探究:在橢圓上是否存在點(diǎn),使得,若存在,請(qǐng)求出實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植物感染病毒極易導(dǎo)致死亡,某生物研究所為此推出了一種抗病毒的制劑,現(xiàn)對(duì)株感染了病毒的該植株樣本進(jìn)行噴霧試驗(yàn)測(cè)試藥效.測(cè)試結(jié)果分植株死亡植株存活兩個(gè)結(jié)果進(jìn)行統(tǒng)計(jì);并對(duì)植株吸收制劑的量(單位:)進(jìn)行統(tǒng)計(jì)規(guī)定:植株吸收在(包括)以上為足量,否則為不足量”.現(xiàn)對(duì)該株植株樣本進(jìn)行統(tǒng)計(jì),其中植株存活株,對(duì)制劑吸收量統(tǒng)計(jì)得下表.已知植株存活制劑吸收不足量的植株共.

編號(hào)

吸收量

1)完成以下列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過的前提下,認(rèn)為植株的存活制劑吸收足量有關(guān)?

吸收足量

吸收不足量

合計(jì)

植株存活

植株死亡

合計(jì)

2)若在該樣本制劑吸收不足量的植株中隨機(jī)抽取株,求這株中恰有植株存活的概率.

參考數(shù)據(jù):

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲乙丙丁四個(gè)人相互之間傳球,從甲開始傳球,甲等可能地把球傳給乙丙丁中的任何一個(gè)人,依此類推.

1)通過三次傳球后,球經(jīng)過乙的次數(shù)為ξ,求ξ的分布列和期望;

2)設(shè)經(jīng)過n次傳球后,球落在甲手上的概率為an,

i)求a1,a2,an

ii)探究:隨著傳球的次數(shù)足夠多,球落在甲乙丙丁每個(gè)人手上的概率是否相等,并簡(jiǎn)單說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案