在平面直角坐標系中,以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系.已知曲線
的極坐標方程為
,直線
的參數(shù)方程為
為參數(shù),
).
(1)化曲線的極坐標方程為直角坐標方程;
(2)若直線經(jīng)過點
,求直線
被曲線
截得的線段
的長.
(1) ;(2)8
【解析】
試題分析:(1)極坐標化為直角坐標的基本公式是,本小題要在極坐標方程的兩邊乘以一個
.再根據(jù)基本轉(zhuǎn)化公式,即可化簡.
(2)解(一)將直線的參數(shù)方程化為直角方程,在聯(lián)立拋物線方程,消去y即可得到一個關(guān)于x的一元二次方程,從而利用韋達定理,以及弦長公式求出弦長.解(二)由直線的參數(shù)方程與拋物線方程聯(lián)立.再根據(jù)弦長公式,利用韋達定理即可求出弦長.
試題解析:解法(一):(1)由得
,即曲線C的直角坐標方程為
.
(2)由直線經(jīng)過點(1,0),得直線
的直角坐標系方程是
,聯(lián)立
,消去y,得
,又點(1,0)是拋物線的焦點,由拋物線定義,得弦長
=6+2=8.
解法(二):(1)同解法一.
(2)由直線經(jīng)過點(1,0),得
,直線
的參數(shù)方程為
將直線
的參數(shù)方程代入
,得
,所以
.
考點:1.極坐標方程.2.參數(shù)方程.3.直線與拋物線的弦長公式.
科目:高中數(shù)學 來源: 題型:
π | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π |
2 |
3π |
2 |
AC |
BC |
π |
2 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com