9.為了解寶雞市的交通狀況,現(xiàn)對其6條道路進行評估,得分分別為:5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如表:
評估的平均得分(0,6)[6,8)[8,10]
全市的總體交通狀況等級不合格合格優(yōu)秀
(1)求本次評估的平均得分,并參照上表估計該市的總體交通狀況等級;
(2)用簡單隨機抽樣方法從這6條道路中抽取2條,它們的得分組成一個樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超過0.5的概率.

分析 (1)由已知中對其6條道路進行評估,得分分別為:5,6,7,8,9,10,計算出得分的平均分,然后將所得答案與表中數(shù)據(jù)進行比較,即可得到答案.
(2)我們列出從這6條道路中抽取2條的所有情況,及滿足樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超0.5情況,然后代入古典概型公式即可得到答案.

解答 解:(1)6條道路的平均得分為$\frac{1}{6}$(5+6+7+8+9+10)=7.5)…(3分)
∴該市的總體交通狀況等級為合格.…(5分)
(2)設A表示事件“樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5”.
從6條道路中抽取2條的得分組成的所有基本事件為:
(5,6),(5,7),(5,8),(5,9),(5,10)
(6,7),(6,8),(6,9),(6,10),(7,8)
(7,9),(7,10),(8,9),(8,10),(9,10),共15個基本事件.
事件A包括(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9)共7個基本事件,
∴P(A)=$\frac{7}{15}$
答:該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5的概率為$\frac{7}{15}$.…(12分)

點評 本題考查的知識點是古典概型,平均數(shù),古典概型要求所有結果出現(xiàn)的可能性都相等,強調(diào)所有結果中每一結果出現(xiàn)的概率都相同.解決問題的步驟是:計算滿足條件的基本事件個數(shù),及基本事件的總個數(shù),然后代入古典概型計算公式進行求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,a=6,B=30°,C=120°,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖,角α的始邊與x軸的非負半軸重合,終邊與單位圓交于點A(x1,y1),角β=α+$\frac{2π}{3}$的終邊與單位圓交于點B(x2,y2),記f(α)=y1-y2.若角α為銳角,則f(α)的取值范圍是(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=2+4x+$\frac{1}{x}$(x>0)的最小值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.運行如圖所示框圖的相應程序,若輸入a,b的值分別為0.25和4,則輸出M的值是( 。
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{5x-2,x<2}\\{{x}^{2}+2ax,x≥2}\end{array}\right.$,若f(f(1))=3a,則實數(shù)a=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)y=0.2x的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列函數(shù)中,與y=x表示同一函數(shù)的是( 。
A.y=$\frac{|x|}{x}$B.y=${a^{{{log}_a}x}}$(a>0且a≠1)
C.y=$\sqrt{x^2}$D.y=logaax(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-1|+|x+1|(x∈R)
(1)畫出函數(shù)圖象,并寫出函數(shù)的值域;
(2)求使函數(shù)F(x)=f(x)-n有兩個不同的零點時的n的取值范圍.

查看答案和解析>>

同步練習冊答案