【題目】“互聯(lián)網(wǎng)+”是“智慧城市”的重要內(nèi)容,A市在智慧城市的建設(shè)中,為方便市民使用互聯(lián)網(wǎng),在主城區(qū)覆蓋了免費(fèi)WiFi為了解免費(fèi)WiFi在A市的使用情況,調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人):
經(jīng)常使用免費(fèi)WiFi | 爾或不用免費(fèi)WiFi | 合計(jì) | |
45歲及以下 | 70 | 30 | 100 |
45歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有90%的把握認(rèn)為A市使用免費(fèi)WiFi的情況與年齡有關(guān);
(2)現(xiàn)從所抽取的45歲以上的市民中按是否經(jīng)常使用WiFi進(jìn)行分層抽樣再抽取5人.
(i)分別求這5人中經(jīng)常使用,偶爾或不用免費(fèi)WFi的人數(shù);
(ii)從這5人中,再隨機(jī)選出2人各贈(zèng)送1件禮品,求選出的2人中至少有1人經(jīng)常使用免費(fèi)WiFi的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1) 沒有90%的把握認(rèn)為A市使用免費(fèi)WiFi的情況與年齡有關(guān)(2) (i)經(jīng)常使用3人,偶爾或不用免費(fèi)2人 (ii)
【解析】
(1)計(jì)算出的值,由此判斷出沒有的把握認(rèn)為A市使用免費(fèi)WiFi的情況與年齡有關(guān).
(2)(i)利用分層抽樣知識(shí)計(jì)算出經(jīng)常使用,偶爾或不用免費(fèi)WFi的人數(shù).
(ii)利用列舉法以及古典概型概率公式計(jì)算出所求的概率.
(1)由列聯(lián)表可知
因?yàn)?/span>,所以沒有90%的把握認(rèn)為A市使用免費(fèi)WiFi的情況與年齡有關(guān)
(2)(i)依題意可知,在所抽取的5名45歲以上的網(wǎng)友中,經(jīng)常使用免費(fèi)WiFi的有人,偶爾或不用免費(fèi)WiFi的有人
(ii)設(shè)這5人中,經(jīng)常使用免費(fèi)Wifi的3人分別為A,B,C;偶爾或不用免費(fèi)WiFi的2人分別為d,e
則從5人中選出2人的所有可能結(jié)果為
共10種
其中沒有人經(jīng)常使用免費(fèi)WiFi的可能結(jié)果為,共種.
故選出的2人中至少有1人經(jīng)常使用免費(fèi)WiFi的概率
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,二面角的大小為120°,點(diǎn)在棱上,且,點(diǎn)為的重心.
(1)證明:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)試討論函數(shù)的單調(diào)區(qū)間;
(2)若不等式對于任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到定直線的距離小1.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn)和.設(shè)線段, 的中點(diǎn)分別為,求證:直線恒過一個(gè)定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,、,,點(diǎn)在橢圓上,為原點(diǎn).
⑴若,,求橢圓的離心率;
⑵若橢圓的右頂點(diǎn)為,短軸長為2,且滿足為橢圓的離心率).
①求橢圓的方程;
②設(shè)直線:與橢圓相交于、兩點(diǎn),若的面積為1,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項(xiàng)和為,且對任意正整數(shù),都有;
(1)試證明數(shù)列是等差數(shù)列,并求其通項(xiàng)公式;
(2)如果等比數(shù)列共有2017項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列的每相鄰兩項(xiàng)與之間插入個(gè)后,得到一個(gè)新數(shù)列,求數(shù)列中所有項(xiàng)的和;
(3)如果存在,使不等式成立,若存在,求實(shí)數(shù)的范圍,若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的焦點(diǎn)是橢圓: ()的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)動(dòng)點(diǎn), 在橢圓上,且,記直線在軸上的截距為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com