【題目】如圖,三棱柱中,側(cè)棱底面,,,,外接球的球心為,點是側(cè)棱上的一個動點.有下列判斷:①直線與直線是異面直線;②一定不垂直于; ③三棱錐的體積為定值;④的最小值為.其中正確的序號是______

【答案】①③④

【解析】

對四個判斷逐一分析,由此確定正確判斷的序號.

對于①,由于平面外一條直線與平面相交于一點,則此直線與平面內(nèi)不過交點的直線互為異面直線,所以①正確.

對于②,過,交.由于,所以平面,而,所以平面.所以,所以平面,所以,所以②錯誤.

對于③,由于兩兩垂直,所以三棱柱的外接球直徑為(或),也即球心在的交點處.由于,所以平面,所以動點到平面的距離為定值,而三角形面積為定值,所以三棱錐的體積為定值,所以③正確.

對于④,將兩個半平面展開成矩形(平面圖形),則的最小值為.故④正確.

故答案為:①③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】社區(qū)服務(wù)是高中學(xué)生社會實踐活動的一個重要內(nèi)容,漢中某中學(xué)隨機抽取了100名男生、100名女生,了解他們一年參加社區(qū)服務(wù)的時間,按,,(單位:小時)進(jìn)行統(tǒng)計,得出男生參加社區(qū)服務(wù)時間的頻率分布表和女生參加社區(qū)服務(wù)時間的頻率分布直方圖.

(1)完善男生參加社區(qū)服務(wù)時間的頻率分布表和女生參加社區(qū)服務(wù)時間的頻率分布直方圖.

抽取的100名男生參加社區(qū)服務(wù)時間的頻率分布表

社區(qū)服務(wù)時間

人數(shù)

頻率

0.05

20

0.35

30

合計

100

1

學(xué)生社區(qū)服務(wù)時間合格與性別的列聯(lián)表

不合格的人數(shù)

合格的人數(shù)

(2)按高中綜合素質(zhì)評價的要求,高中學(xué)生每年參加社區(qū)服務(wù)的時間不少于20個小時才為合格,根據(jù)上面的統(tǒng)計圖表,完成抽取的這200名學(xué)生參加社區(qū)服務(wù)時間合格與性別的列聯(lián)表,并判斷是否有以上的把握認(rèn)為參加社區(qū)服務(wù)時間達(dá)到合格程度與性別有關(guān),并說明理由.

(3)用以上這200名學(xué)生參加社區(qū)服務(wù)的時間估計全市9萬名高中學(xué)生參加社區(qū)服務(wù)時間的情況,并以頻率作為概率.

(i)求全市高中學(xué)生參加社區(qū)服務(wù)時間不少于30個小時的人數(shù).

(ⅱ)對我市高中生參加社區(qū)服務(wù)的情況進(jìn)行評價.

參考公式

0.150

0.100

0.050

0.025

0.010

0.002

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線平面,垂足是,正四面體的棱長為,點在平面上運動,點在直線上運動,則點到直線的距離的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,若對任意,存在,,則實數(shù)的取值范圍為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組有男生20人,女生10人,從中抽取一個容量為5的樣本,恰好抽到2名男生和3名女生,則

①該抽樣可能是系統(tǒng)抽樣;

②該抽樣可能是隨機抽樣:

③該抽樣一定不是分層抽樣;

④本次抽樣中每個人被抽到的概率都是

其中說法正確的為( )

A.①②③B.②③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,點為曲線上的動點,點在線段的延長線上,且滿足,點的軌跡為

(1)求,的極坐標(biāo)方程;

(2)設(shè)點的極坐標(biāo)為,求△面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐SABCD中,底面ABCD是直角梯形,ABADABBC,側(cè)面SAB⊥底面ABCD,且SASBABBC2,AD1

1)設(shè)E為棱SB的中點,求證:AE⊥平面SBC;

2)求平面SCD與平面SAB所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

(1)求證:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

(3)求點C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市高中某學(xué)科競賽中,某區(qū)名考生的參賽成績的頻率分布直方圖如圖所示.

1)求這名考生的平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點值作代表);

2)記分以上為合格,分及以下為不合格,結(jié)合頻率分布直方圖完成下表,能否在犯錯誤概率不超過的前提下認(rèn)為該學(xué)科競賽成績與性別有關(guān)?

不合格

合格

合計

男生

女生

合計

附:

.

查看答案和解析>>

同步練習(xí)冊答案