已知橢圓C:數(shù)學(xué)公式(a>b>0)的一個(gè)焦點(diǎn)到長(zhǎng)軸的兩個(gè)端點(diǎn)的距離分別為2+數(shù)學(xué)公式和2-數(shù)學(xué)公式
(1)求橢圓的方程;
(2)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)如圖,過原點(diǎn)O任意作兩條互相垂直的直線與橢圓數(shù)學(xué)公式(a>b>0)交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

解:(1)由題意得,解得a=2,c=,b=1
所求的方程為
(2)顯然直線x=0不滿足題設(shè)條件,可設(shè)直線l:y=kx+2,A(x1,y1
得(1+4k2)x2+16kx+12=0.
∵△=(16k)2-4×12(1+4k2)>0,∴k∈(-∞,-)∪(,+∞)(1)
又x1+x2=,
由0°<∠AOE<90°?
所以=x1x2+(kx1+2)(kx2+2)
=(1+k2)x1x2+2k(x1+x2)+4=+2k+4>0
∴-2<k<2 (2)
由(1)(2)得:k∈(-2,-)∪(,2).
(3)由橢圓的對(duì)稱性可知PQSR是菱形,原點(diǎn)O到各邊的距離相等.
當(dāng)P在y軸上,Q在x軸上時(shí),直線PQ的方程為,由d=1得,
當(dāng)P不在y軸上時(shí),設(shè)直線PS的斜率為k,P(x1,kx1),則直線RQ的斜率為-,Q(x2,-
,得(1),同理(2)
在Rt△OPQ中,由d|PQ|=|OP||OQ|,即|PQ|2=|OP|2•|OQ|2
所以,化簡(jiǎn)得
k2)+=1+k2,即
綜上,d=1時(shí)a,b滿足條件
分析:(1)由橢圓的幾何性質(zhì)可得焦點(diǎn)到長(zhǎng)軸的兩個(gè)端點(diǎn)的距離分別為a+c和a-c,再把所給數(shù)值代入即可.
(2)斜率k的取值范圍,須將k用其它參數(shù)表示,先設(shè)直線l的方程,代入橢圓方程,求x1+x2和x1x2,再根據(jù)∠AOB為銳角得到向量的數(shù)量積大于0,用直線l的斜率k表示的數(shù)量積,即可得到k的范圍.
(3)先根據(jù)橢圓的對(duì)稱性判斷PQSR是菱形,原點(diǎn)O到各邊的距離相等.設(shè)四邊形PQSR的一條對(duì)角線的方程,根據(jù)菱形對(duì)角線互相垂直,可得另一條對(duì)角線的方程,分別與橢圓方程聯(lián)立,再借助菱形各邊長(zhǎng)相等,即可得到a,b滿足的條件.
點(diǎn)評(píng):本體考查了橢圓性質(zhì)的應(yīng)用,以及判斷直線與橢圓位置關(guān)系時(shí),韋達(dá)定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三(上)期末質(zhì)量檢查一級(jí)達(dá)標(biāo)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知一直線l過橢圓C的右焦點(diǎn)F2,交橢圓于點(diǎn)A、B.
(ⅰ)若滿足(O為坐標(biāo)原點(diǎn)),求△AOB的面積;
(ⅱ)當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在一點(diǎn)P,使得直線PA、PB的傾斜角互為補(bǔ)角?若存在,求出P坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷解析版) 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)

(I)求橢圓C的離心率:

(II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且,求點(diǎn)Q的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆甘肅武威六中高二12月學(xué)段檢測(cè)文科數(shù)學(xué)試題(解析版) 題型:解答題

(12分)已知橢圓C:(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N.

 ①求橢圓C的方程.

 ②當(dāng)⊿AMN的面積為時(shí),求k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第七次月考理科數(shù)學(xué) 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點(diǎn)A,B且線段AB的垂直平分線過定點(diǎn)C(,0)求實(shí)數(shù)k的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:選擇題

已知橢圓C:(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為kk>0)的直線與橢圓C相交于A、B兩點(diǎn),若。則 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案