【題目】已知函數(shù), ,其中

(1)設函數(shù),求函數(shù)的單調區(qū)間;

(2)若存在,使得成立,求的取值范圍.

【答案】(1) 見解析;(2).

【解析】試題分析:(1)求函數(shù)的導數(shù),討論的關系由導數(shù)的正負即可找到單調區(qū)間;

(2)若存在,使得成立,即存在,使得,只需函數(shù)上的最小值小于零即可.

試題解析:

(1),

①當時,即時,在,在

所以上單調遞減,在上單調遞增;

②當,即時,在,

所以,函數(shù)上單調遞增.

(2)若存在,使得成立,即存在,使得,即函數(shù)上的最小值小于零.

由(1)可知:

①當,即時, 上單調遞減,

所以的最小值為,

可得

因為,所以.

②當,即時, 上單調遞增,

所以最小值為,由可得.

③當,即時,可得的最小值為,

因為,所以, ,故,不合題意

綜上可得所求的范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務.該地區(qū)某高級中學一興趣小組由9名高二級學生和6名高一級學生組成,現(xiàn)采用分層抽樣的方法抽取5人,組成一個體驗小組去市場體驗“共享單車”的使用.問:

(Ⅰ)應從該興趣小組中抽取高一級和高二級的學生各多少人;

(Ⅱ)已知該地區(qū)有, 兩種型號的“共享單車”,在市場體驗中,該體驗小組的高二級學生都租型車,高一級學生都租型車.如果從組內隨機抽取2人,求抽取的2人中至少有1人在市場體驗過程中租型車的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為2.10元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元.已知甲、乙兩用戶該月用水量分別為5x,3x噸.

(1)y關于x的函數(shù);

(2)如甲、乙兩戶該月共交水費40.8元,分別求出甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

某公司經銷某產品,第的銷售價格為為常數(shù))(元件),第天的銷售量為(件),且公司在第天該產品的銷售收入為元.

(1)求該公司在第天該產品的銷售收入是多少?

(2)天中該公司在哪一天該產品的銷售收入最大?最大收入為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,用KA1、A2三類不同的元件連接成一個系統(tǒng).當K正常工作且A1、A2至少有一個正常工作時,系統(tǒng)正常工作,已知KA1、A2正常工作的概率依次是0.90.8、0.8,則系統(tǒng)正常工作的概率為( )

A. 0.960 B. 0.864 C. 0.720 D. 0.576

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.直線過點.

(1)若直線與曲線交于兩點,求的值;

(2)求曲線的內接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù),滿足,實數(shù),滿足,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017銀川一中模擬】如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.現(xiàn)以AD為一邊向梯形外作矩形ADEF,然后沿邊AD將矩形ADEF翻折,使平面ADEF與平面ABCD垂直.

(1)求證:BC⊥平面BDE;

(2)若點D到平面BEC的距離為,求三棱錐F-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了實現(xiàn)60萬元的生源利潤目標,準備制定一個激勵招生人員的獎勵方案:在生源利潤達到5萬元時,按生源利潤進行獎勵,且資金y(單位:萬元)隨生源利潤x(單位:萬元)的增加而增加,但資金總數(shù)不超過3萬元,同時獎金不超過利潤的20%.現(xiàn)有三個獎勵模型:y=0.2x,y=log5xy=1.02x,其中哪個模型符合該校的要求?

查看答案和解析>>

同步練習冊答案