【題目】已知函數(shù), ,其中

(1)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

(2)若存在,使得成立,求的取值范圍.

【答案】(1) 見解析;(2).

【解析】試題分析:(1)求函數(shù)的導(dǎo)數(shù),討論的關(guān)系由導(dǎo)數(shù)的正負(fù)即可找到單調(diào)區(qū)間;

(2)若存在,使得成立,即存在,使得,只需函數(shù)上的最小值小于零即可.

試題解析:

(1),

①當(dāng)時(shí),即時(shí),在,在

所以上單調(diào)遞減,在上單調(diào)遞增;

②當(dāng),即時(shí),在,

所以,函數(shù)上單調(diào)遞增.

(2)若存在,使得成立,即存在,使得,即函數(shù)上的最小值小于零.

由(1)可知:

①當(dāng),即時(shí), , 上單調(diào)遞減,

所以的最小值為

可得,

因?yàn)?/span>,所以.

②當(dāng),即時(shí), 上單調(diào)遞增,

所以最小值為,由可得.

③當(dāng),即時(shí),可得的最小值為,

因?yàn)?/span>,所以, ,故,不合題意

綜上可得所求的范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務(wù).該地區(qū)某高級(jí)中學(xué)一興趣小組由9名高二級(jí)學(xué)生和6名高一級(jí)學(xué)生組成,現(xiàn)采用分層抽樣的方法抽取5人,組成一個(gè)體驗(yàn)小組去市場(chǎng)體驗(yàn)“共享單車”的使用.問:

(Ⅰ)應(yīng)從該興趣小組中抽取高一級(jí)和高二級(jí)的學(xué)生各多少人;

(Ⅱ)已知該地區(qū)有, 兩種型號(hào)的“共享單車”,在市場(chǎng)體驗(yàn)中,該體驗(yàn)小組的高二級(jí)學(xué)生都租型車,高一級(jí)學(xué)生都租型車.如果從組內(nèi)隨機(jī)抽取2人,求抽取的2人中至少有1人在市場(chǎng)體驗(yàn)過程中租型車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時(shí),每噸為2.10元,當(dāng)用水超過4噸時(shí),超過部分每噸3.00元,某月甲、乙兩戶共交水費(fèi)y元.已知甲、乙兩用戶該月用水量分別為5x,3x噸.

(1)y關(guān)于x的函數(shù);

(2)如甲、乙兩戶該月共交水費(fèi)40.8元,分別求出甲、乙兩戶該月的用水量和水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

某公司經(jīng)銷某產(chǎn)品,第的銷售價(jià)格為為常數(shù))(元件),第天的銷售量為(件),且公司在第天該產(chǎn)品的銷售收入為元.

(1)求該公司在第天該產(chǎn)品的銷售收入是多少?

(2)天中該公司在哪一天該產(chǎn)品的銷售收入最大?最大收入為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,用K、A1、A2三類不同的元件連接成一個(gè)系統(tǒng).當(dāng)K正常工作且A1A2至少有一個(gè)正常工作時(shí),系統(tǒng)正常工作,已知KA1、A2正常工作的概率依次是0.9、0.8、0.8,則系統(tǒng)正常工作的概率為( )

A. 0.960 B. 0.864 C. 0.720 D. 0.576

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線過點(diǎn).

(1)若直線與曲線交于兩點(diǎn),求的值;

(2)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù),滿足,實(shí)數(shù),滿足,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017銀川一中模擬】如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.現(xiàn)以AD為一邊向梯形外作矩形ADEF,然后沿邊AD將矩形ADEF翻折,使平面ADEF與平面ABCD垂直.

(1)求證:BC⊥平面BDE;

(2)若點(diǎn)D到平面BEC的距離為,求三棱錐F-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了實(shí)現(xiàn)60萬元的生源利潤(rùn)目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)招生人員的獎(jiǎng)勵(lì)方案:在生源利潤(rùn)達(dá)到5萬元時(shí),按生源利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且資金y(單位:萬元)隨生源利潤(rùn)x(單位:萬元)的增加而增加,但資金總數(shù)不超過3萬元,同時(shí)獎(jiǎng)金不超過利潤(rùn)的20%.現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:y=0.2x,y=log5x,y=1.02x,其中哪個(gè)模型符合該校的要求?

查看答案和解析>>

同步練習(xí)冊(cè)答案