【題目】如圖,已知ABCD為平行四邊形,∠A=60°,線段AB上點(diǎn)F滿足AF=2FB,AB長為12,點(diǎn)E在CD上,EF∥BC,BD⊥AD,BD與EF相交于N.現(xiàn)將四邊形ADEF沿EF折起,使點(diǎn)D在平面BCEF上的射影恰在直線BC上.
(Ⅰ)求證:BD⊥平面BCEF;
(Ⅱ)求折后直線DE與平面BCEF所成角的正弦值.
【答案】(Ⅰ)證明:EF⊥DN,EF⊥BN,
∴EF⊥平面BDN,
∴平面BDN⊥平面BCEF,
又∵BN為平面BDN與平面BCEF的交線,
∴D在平面BCEF上的射影在直線BN上,
而D在平面BCEF上的射影在BC上,
∴D在平面BCEF上的射影即為點(diǎn)B,
即BD⊥平面BCEF.
(Ⅱ)解:如圖,D在平面BCEF上的射影點(diǎn)為點(diǎn)B,
∴∠DEB為DE與平面BCEF所成的角,
DE=AF=8,NF=2,NE=4,NB=2 ,NB⊥NE,
∴BE=2 ,DB= =6,
∴sin∠DEB= = ,
即直線DE與平面BCEF所成角的正弦值為 .
【解析】(1)要證BD⊥BCEF,只需要證明D在平面BCEF上的射影即為點(diǎn)B即可;(2)連接BE,由于D在平面BCEF上的射影點(diǎn)為點(diǎn)B,故∠DEB為DE與平面BCEF所成的角,利用幾何關(guān)系得出正弦值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線與平面垂直的判定(一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想),還要掌握空間角的異面直線所成的角(已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3 (1﹣a)x2﹣3ax+1,a>0.
(1)試討論f(x)(x≥0)的單調(diào)性;
(2)證明:對于正數(shù)a,存在正數(shù)p,使得當(dāng)x∈[0,p]時,有﹣1≤f(x)≤1;
(3)設(shè)(1)中的p的最大值為g(a),求g(a)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣a+lnx.
(Ⅰ)若a=1,求證:當(dāng)x>1時,f(x)>2x﹣1;
(Ⅱ)若存在x0≥e,使f(x0)<2lnx0 , 求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體ABCDEF中,ABCD為直角梯形,AB∥CD,∠DAB=90°,四邊形ADEF為等腰梯形,EF∥AD,已知AE⊥EC,AB=AF=EF=2,AD=CD=4.
(1)求證:平面ABCD⊥平面ADEF;
(2)求直線CF與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中有大小相同,編號分別為1,2,3,4,5的五個球,從中有放回地每次取一個球,共取3次,取得三個球的編號之和不小于13的概率為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊長分別為a,b,c,且 .
(1)求角B的大。
(2)若 ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12個不同的根,則實(shí)數(shù)t的取值范圍為( 。
A.(﹣ ,﹣2)
B.(﹣∞,﹣2)
C.﹣ <t<﹣2
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時,求|AB|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com