【題目】已知,,其中均為實數(shù).

)若,求的取值范圍;

)設(shè),若,在區(qū)間上總存在使得成立,求的取值范圍.

【答案】;(.

【解析】

)利用導(dǎo)數(shù)研究函數(shù)在區(qū)間上的單調(diào)性,由此可求得函數(shù)在區(qū)間上的值域;

)求得,分兩種情況討論,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,由題意可知函數(shù)的極值點必在區(qū)間,且上的值域包含于的值域,由此可得出實數(shù)的不等式組,即可解得實數(shù)的取值范圍.

)由題意可知,所以當(dāng)時,,函數(shù)上單調(diào)遞增,

當(dāng)時,,函數(shù)上單調(diào)遞減,所以,

又因為,,所以

)由題意可知,

當(dāng)時,,所以,函數(shù)上單調(diào)遞減,不符合題意;

當(dāng)時,在區(qū)間上總存在、使得,

那么由題意知的極值點必在區(qū)間內(nèi),即,得,且函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

由題意得上的值域包含于的值域,

所以,整理得,記

,當(dāng)時,,函數(shù)單調(diào)遞增,

當(dāng)時,,函數(shù)單調(diào)遞減,所以,

即當(dāng)時,成立,即成立,所以.

因此,實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),R.

(Ⅰ)求函數(shù)處的切線方程;

(Ⅱ)若對任意的實數(shù),不等式恒成立,求實數(shù)的最大值;

(Ⅲ)設(shè),若對任意的實數(shù),關(guān)于的方程有且只有兩個不同的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,.估計該校學(xué)生每周平均體育運動時間超過6個小時的概率.

3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x) = -ax(a > 0).

(1) 當(dāng) a = 1 時,求證:對于任意 x > 0,都有 f(x) > 0 成立;

(2) 若函數(shù) y = f(x) 恰好在 x = x1 和 x = x2 兩處取得極值,求證:< ln a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

如果曲線x軸相切,求a的值;

,證明:

如果函數(shù)在區(qū)間上不是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求fx)的最小正周期;

(Ⅱ)若直線x=π為函數(shù)fx+a)圖象的一條對稱軸,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是__________(填序號)

1)已知相關(guān)變量滿足回歸方程,若變量增加一個單位,則平均增加個單位

2)若為兩個命題,則為假命題是為假命題的充分不必要條件

3)若命題,,則,

4)已知隨機變量,若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國于201510月宣布實施普遍二孩政策,為了解戶籍、性別對生育二胎選擇傾向的影響,某地從育齡群體中隨機抽取了容量為140的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)村戶籍各70人;男性60人,女性80人,繪制的不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例如圖所示,其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述正確的是( )

A.是否傾向選擇生育二胎與戶籍有關(guān)

B.是否傾向選擇生育二胎與性別有關(guān)

C.調(diào)查樣本里面傾向選擇生育二胎的人群中,男性人數(shù)少于女性人數(shù)

D.傾向選擇不生育二胎的人群中,農(nóng)村戶籍人數(shù)多于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值.

1)由以往統(tǒng)計數(shù)據(jù)知,設(shè)備的性能根據(jù)以下不等式進行評判(表示相應(yīng)事件的概率);①;②;③,評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁.為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,試判斷設(shè)備的性能等級

2)將直徑小于等于或直徑大于的零件認為是次品.

i)若從設(shè)備的生產(chǎn)流水線上隨意抽取2件零件,求恰有一件次品的概率;

ii)若從樣本中隨意抽取2件零件,計算其中次品個數(shù)分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案