已知函數(shù)f(x)=x2lnx
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對任意的t>0,存在唯一的s,使t=f(s);
(3)設(shè)(2)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當(dāng)t>e2時,有0<
lng(t)
lnt
1
2
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)函數(shù)的定義域為(0,+∞),求導(dǎo)數(shù)令f′(x)=0,然后判斷其單調(diào)性;
(Ⅱ)當(dāng)0<x≤1時,f(x)≤0,設(shè)t>0,令h(x)=f(x)-t,x∈[1,+∞),由(Ⅰ)可得函數(shù)h(x)的單調(diào)性,可得結(jié)論;
(Ⅲ)令u=lns,原命題轉(zhuǎn)化為0<lnu<
u
2
,一方面由f(s)的單調(diào)性,可得u>1,從而lnu>0成立,進而得證.
解答: 解:(Ⅰ)由題意可知函數(shù)的定義域為(0,+∞),
求導(dǎo)數(shù)可得f′(x)=2xlnx+x=x(2lnx+1),
令f′(x)=0,可解得x=
1
e

當(dāng)x變化時,f′(x),f(x)的變化情況如下表:
x(0,
1
e
1
e
1
e
,+∞)
f′(x)-0+
f(x)單調(diào)遞減極小值 單調(diào)遞增
所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,
1
e
),單調(diào)遞增區(qū)間為(
1
e
,+∞);
(Ⅱ)證明:當(dāng)0<x≤1時,f(x)≤0,設(shè)t>0,令h(x)=f(x)-t,x∈[1,+∞),
由(Ⅰ)可知,h(x)在區(qū)間(1,+∞)單調(diào)遞增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0,
故存在唯一的s∈(1,+∞),使得t=f(s)成立;
(Ⅲ)證明:因為s=g(t),由(Ⅱ)知,t=f(s),且s>1,
從而
lng(t)
lnt
=
lns
lnf(s)
=
lns
ln(s2lns)
=
lns
2lns+lnlns
=
u
2u+lnu

其中u=lns,
要使0<
lng(t)
lnt
1
2
成立,只需lnu>0,
當(dāng)t>e2時,若s=g(t)≤e,則由f(s)的單調(diào)性,有t=f(s)≤f(e)=e2,矛盾,
∴s>e,即u>1,從而lnu>0成立,
∴當(dāng)t>e2時,有0<
lng(t)
lnt
1
2
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,涉及極值的求解和不等式的證明,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式的值:
(1)(
32
3
)6+log31-(-2013)0

(2)log354-log32+
(3-π)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn,且Sn=n2+n+1(n∈N+).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)函數(shù)g(x)=log2x,若{g(bn)}是首項為1,公差為1的等差數(shù)列,求數(shù)列{an•bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<x,y<
π
2
,且sinx=xcosy,求證:y<x<2y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn.已知a1=6,an+1=3Sn+5n,n∈N*
(1)設(shè)bn=Sn-5n,求數(shù)列{bn}的通項公式;
(2)數(shù)列{bn}中是否存在不同的三項,它們構(gòu)成等差數(shù)列?若存在,請求出所有滿足條件的三項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n(n-6),數(shù)列{bn}滿足b2=3,bn+1=3bn(n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項的公式
(Ⅱ)記數(shù)列{anbn}的前n項和為Tn,求Tn<2014時n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,0),P為圓F:(x+1)2+y2=16上任意一點,線段AP的垂直平分線交半徑FP于點Q,當(dāng)點P在圓上運動時,
(1)求點Q的軌跡方程;
(2)設(shè)點D(0,1),是否存在不平行于x軸的直線l與點Q的軌跡交于不同的兩點M,N,使(
DM
+
DN
)
MN
=0,若存在,求出直線l的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,
1
1+an+1
-
1
1+an
=
1
2
(n∈N*),
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設(shè)bn=1+a 2n(n∈N*),求數(shù)列{bn}的前10項和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3+
1-a
2
x2
-ax-a(a>0).
(1)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(2)當(dāng)a=1時,求函數(shù)f(x)在區(qū)間[t,t+3]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案