如圖,A、B兩點之間有6條網(wǎng)線并聯(lián),它們能通過的最大信息量分別為1,1,2,2,3,4.從中任取三條網(wǎng)線且使每條網(wǎng)線通過最大的信息量.
(I)設選取的三條網(wǎng)線由A到B可通過的信息總量為x,當x≥6時,則保證信息暢通.求線路信息暢通的概率;
(Ⅱ)求選取的三條網(wǎng)線可通過信息總量的數(shù)學期望.
【答案】分析:(1)由題意知通過的信息量x≥6,則可保證信息通暢.線路信息通暢包括四種情況,即通過的信息量分別為9,8,7,6,這四種情況是互斥的,根據(jù)互斥事件的概率公式和等可能事件的概率公式得到結(jié)果.
(2)線路可通過的信息量x,ξ的所有可能取值為4,5,6,7,8,9,結(jié)合變量對應的事件和等可能事件的概率及互斥事件的概率,得到變量的概率,求出通過信息總量的數(shù)學期望.
解答:解:(I)∵1+1+4=1+2+3=6,
∴P(x=6)=
∵1+2+4=2+2+3=7,
∴P(x=7)=
∴P(x=8)=,
∴P(x=9)=,
∴線路信息暢通的概率是
(II)x=4,5,6,7,8,9
∵1+1+2=4,P(x=4)=,
∵1+1+3=1+2+2=5,P(x=5)=
∴線路通過信息量的數(shù)學期望=4×=6.5
點評:概率統(tǒng)計的綜合題,難度不大,因此一直是廣大考生力求拿分的重要項目.概率、期望的計算是經(jīng)常考查的內(nèi)容,排列、組合知識是基礎(chǔ),掌握準確的分類和分步是解決概率問題的奠基石.屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2004•黃岡模擬)如圖,A、B兩點之間有6條網(wǎng)線并聯(lián),它們能通過的最大信息量分別為1,1,2,2,3,4.從中任取三條網(wǎng)線且使每條網(wǎng)線通過最大的信息量.
(I)設選取的三條網(wǎng)線由A到B可通過的信息總量為x,當x≥6時,則保證信息暢通.求線路信息暢通的概率;
(Ⅱ)求選取的三條網(wǎng)線可通過信息總量的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣州二模)如圖,A,B兩點之間有4條網(wǎng)線連接,每條網(wǎng)線能通過的最大信息量分別為1,2,3,4.從中任取兩條網(wǎng)線,則這兩條網(wǎng)線通過的最大信息量之和為5的概率是
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A、B兩點之間有6條網(wǎng)線并聯(lián),它們能通過的最大信息量分別為1,1,2,2,3,4,現(xiàn)從中任取三條網(wǎng)線且使每條網(wǎng)線通過最大信息量.
(1)設選取的三條網(wǎng)線由A到B可通過的信息量為x,當x≥6時,才能保證信息暢通,求信息暢通的概率.
(2)求選取的三條網(wǎng)線可通過信息總量ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣州二模)如圖,A,B兩點之間有6條網(wǎng)線連接,每條網(wǎng)線能通過的最大信息量分別為1,1,2,2,3,4.從中任取三條網(wǎng)線且使每條網(wǎng)線通過最大信息量,設這三條網(wǎng)線通過的最大信息量之和為ξ.
(1)當ξ≥6時,則保證線路信息暢通,求線路信息暢通的概率;
(2)求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A、B兩點之間有4條網(wǎng)線連接,每條網(wǎng)線能通過的最大信息量分別為1,2,3,4.從中任取2條網(wǎng)線,則這2條網(wǎng)線通過的最大信息量之和等于5或6的概率是(  )
A、
5
6
B、
1
2
C、
1
3
D、
1
6

查看答案和解析>>

同步練習冊答案