【題目】(1)求與點P(3,5)關(guān)于直線l:x-3y+2=0對稱的點P′的坐標.(2)已知直線l:y=-2x+6和點A(1,-1),過點A作直線l1與直線l相交于B點,且|AB|=5,求直線l1的方程.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,AF=AD=a,G是EF的中點.
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣農(nóng)民年均收入服從μ=500元,σ=20元的正態(tài)分布,求:
(1)此縣農(nóng)民的年均收入在500~520元之間的人數(shù)的百分比;
(2)此縣農(nóng)民的年均收入超過540元的人數(shù)的百分比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=9x+m3x , 若存在實數(shù)x0 , 使得f(﹣x0)=﹣f(x0)成立,則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列例子中隨機變量ξ服從二項分布的有________.
①隨機變量ξ表示重復(fù)拋擲一枚骰子n次中出現(xiàn)點數(shù)是3的倍數(shù)的次數(shù);
②某射手擊中目標的概率為0.9,從開始射擊到擊中目標所需的射擊次數(shù)ξ;
③有一批產(chǎn)品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)(M<N);
④有一批產(chǎn)品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l過定點P(0,1),且與直線l1:x-3y+10=0,l2:2x+y-8=0分別交于A、B兩點.若線段AB的中點為P,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a<﹣1,函數(shù)f(x)=|x3﹣1|+x3+ax(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知存在實數(shù)m,n(m<n≤1),對任意t0∈(m,n),總存在兩個不同的t1 , t2∈(1,+∞),
使得f(t0)﹣2=f(t1)=f(t2),求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,如圖.
(1)求證:平面AB1D1∥平面C1BD;
(2)試找出體對角線A1C與平面AB1D1和平面C1BD的交點E,F(xiàn),并證明:A1E=EF=FC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面是邊長為a的正方形,側(cè)棱PD=a,PA=PC=a,
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
(3)求二面角P-AC-D的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com