11.已知公差不為0的等差數(shù)列{an},若a2+a4=10,且a1、a2、a5成等比數(shù)列,則a1=1,an=2n-1.

分析 設(shè)等差數(shù)列{an}的公差為d≠0,由a2+a4=10,且a1、a2、a5成等比數(shù)列,可得a22=a1a5,即(a1+d)2=a1(a1+4d),解得a1,d即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d≠0,∵a2+a4=10,且a1、a2、a5成等比數(shù)列,
則2a1+4d=10,
a22=a1a5,即(a1+d)2=a1(a1+4d),
解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
故答案為:1,an=2n-1.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南衡陽(yáng)縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知對(duì)于任意恒成立; ,如果命題“為真,為假”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知四棱錐P-ABCD的底面是正方形,PA⊥平面ABCD,且PA=AD,則平面PAB與平面PCD所成的二面角的度數(shù)為450

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖邊長(zhǎng)為2的正方體ABCD-A1B1C1D1中,M,N分別是CC1,B1C1的中點(diǎn),
(Ⅰ)證明:A1N∥平面AMD1;
(Ⅱ)求二面角M-AD1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.拋物線y2=4x的焦點(diǎn)到雙曲線x2-$\frac{{y}^{2}}{2}$=1的漸近線的距離等于( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{$\frac{{S}_{n}}{n}$}的公差為1的等差數(shù)列,且a2=3,a3=5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an•3n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,在三棱錐A-BCD中,平面ABC⊥平面BCD,△BAC與△BCD均為等腰直角三角形,且∠BAC=∠BCD=90°,BC=2,點(diǎn)P是線段AB上的動(dòng)點(diǎn),若線段CD上存在點(diǎn)Q,使得異面直線PQ與AC成30°的角,則線段PA長(zhǎng)的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{6}}{3}$)C.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$)D.($\frac{\sqrt{6}}{3}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$,O為坐標(biāo)原點(diǎn),M為長(zhǎng)軸的一個(gè)端點(diǎn),若在橢圓上存在點(diǎn)N,使ON⊥MN,則離心率e的取值范圍為( 。
A.$(\frac{{\sqrt{2}}}{2},1)$B.$(0,\frac{{\sqrt{2}}}{2})$C.$(\frac{{\sqrt{3}}}{2},1)$D.$(0,\frac{{\sqrt{3}}}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=axex-(a-1)(x+1)2(其中a∈R,e為自然對(duì)數(shù)的底數(shù),e=2.718128…).
(1)當(dāng)a=-1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)僅有一個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案