(2013•山東)在平面直角坐標系xOy中,已知
OA
=(-1,t)
,
OB
=(2,2)
,若∠ABO=90°,則實數(shù)t的值為
5
5
分析:利用已知條件求出
AB
,利用∠ABO=90°,數(shù)量積為0,求解t的值即可.
解答:解:因為知
OA
=(-1,t)
OB
=(2,2)
,
所以
AB
=(3,2-t),
又∠ABO=90°,所以
OB
AB
=0

可得:2×3+2(2-t)=0.解得t=5.
故答案為:5.
點評:本題考查向量的數(shù)量積的應用,正確利用數(shù)量積公式是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•山東)在平面直角坐標系xOy中,M為不等式組
2x-y-2≥0
x+2y-1≥0
3x+y-8≤0
所表示的區(qū)域上一動點,則直線OM斜率的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)在區(qū)間[-3,3]上隨機取一個數(shù)x使得|x+1|-|x-2|≥1的概率為
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)在平面直角坐標系xOy中,M為不等式組
2x+3y-6≤0
x+y-2≥0
y≥0
所表示的區(qū)域上一動點,則直線|OM|的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)在平面直角坐標系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為
2
2

(Ⅰ)求橢圓C的方程
(Ⅱ)A,B為橢圓C上滿足△AOB的面積為
6
4
的任意兩點,E為線段AB的中點,射線OE交橢圓C與點P,設(shè)
OP
=t
OE
,求實數(shù)t的值.

查看答案和解析>>

同步練習冊答案