【題目】已知橢圓,若此橢圓上存在不同的兩點A,B關(guān)于直線y=4x+m對稱,則實數(shù)m的取值范圍是( )
A. B.
C. D.
【答案】B
【解析】
設橢圓上兩點A(x1,y1)、B(x2,y2)關(guān)于直線y=4x+m對稱,AB中點為M(x0,y0),利用平方差法與直線y=4x+m可求得x0=-m,y0=-3m,點M(x0,y0)在橢圓內(nèi)部,將其坐標代入橢圓方程即可求得m的取值范圍.
橢圓,即:3x2+4y2-12=0,
設橢圓上兩點A(x1,y1)、B(x2,y2)關(guān)于直線y=4x+m對稱,AB中點為M(x0,y0),
則 3x12+4y12-12=0,①
3x22+4y22-12=0 ②
①-②得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
即 32x0(x1-x2)+42y0(y1-y2)=0,
∴ .
∴y0=3x0,代入直線方程y=4x+m得x0=-m,y0=-3m;
因為(x0,y0)在橢圓內(nèi)部,
∴3m2+4(-3m)2<12,即3m2+36m2<12,解得 .
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐A-BCDE中,平面BCDE,底面BCDE為直角梯形,、,,F為AC上一點,且.
(1)求證:平面ADE;
(2)求異面直線AB、DE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當a=1時,求函數(shù)的單調(diào)區(qū)間;
(2)若在上恒成立,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使函數(shù)的最小值是3?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某“雙一流”大學專業(yè)獎學金是以所學專業(yè)各科考試成績作為評選依據(jù),分為專業(yè)一等獎學金(獎金額元)、專業(yè)二等獎學金(獎金額元)及專業(yè)三等獎學金(獎金額元),且專業(yè)獎學金每個學生一年最多只能獲得一次.圖(1)是統(tǒng)計了該校年名學生周課外平均學習時間頻率分布直方圖,圖(2)是這名學生在年周課外平均學習時間段獲得專業(yè)獎學金的頻率柱狀圖.
(Ⅰ)求這名學生中獲得專業(yè)三等獎學金的人數(shù);
(Ⅱ)若周課外平均學習時間超過小時稱為“努力型”學生,否則稱為“非努力型”學生,列聯(lián)表并判斷是否有的把握認為該校學生獲得專業(yè)一、二等獎學金與是否是“努力型”學生有關(guān)?
(Ⅲ)若以頻率作為概率,從該校任選一名學生,記該學生年獲得的專業(yè)獎學金額為隨機變量,求隨機變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,,E,F分別為線段 的中點.
(1)求證:面;
(2)求證:面;
(3)在線段上是否存在一點G,使平面平面,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數(shù)學成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按性別分為男、女兩組,再將兩組學生的分數(shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分數(shù)小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分數(shù)不小于130分的學生為“數(shù)學尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學尖子生與性別有關(guān)”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com