已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),∠F1PF2=60°.

(1)求橢圓離心率的取值范圍;

(2)求證:△F1PF2的面積只與橢圓短軸長(zhǎng)有關(guān).

答案:
解析:

  解析:(1)設(shè)橢圓方程=1(a>b>0)

  由余弦定理得

  cos60°=

  =

  |PF1|·|PF2|=4a2-2|PF1|·|PF2|-4c2∴3|PF1|·|PF2|=4b2∴|PF1|·|PF2|=,

  又∵|PF1|·|PF2|≤()2=a2

  ∴3a2≥4(a2-c2)

  ∴∴e≥

  又∵橢圓中0<e<1∴1>e≥

  (2)由(1)知|PF1|·|PF2|=

  |PF1|·|PF2|sin60°=·×

  ∴△F1PF2的面積只與橢圓的短軸長(zhǎng)有關(guān).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn),若在橢圓上存在一點(diǎn)P,使∠F1PF2=120°,則橢圓離心率的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓的兩個(gè)焦點(diǎn).△F1AB為等邊三角形,A,B是橢圓上兩點(diǎn)且AB過(guò)F2,則橢圓離心率是
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn),橢圓上存在一點(diǎn)P,使得SF1PF2=
3
b2
,則該橢圓的離心率的取值范圍是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1
的兩個(gè)焦點(diǎn),點(diǎn)P是橢圓上一個(gè)動(dòng)點(diǎn),那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案