解:因為等差數(shù)列
,
的前
項和分別為
,
,若
,則
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知正項數(shù)列
的前n項和
滿足:
,
(1)求數(shù)列
的通項
和前n項和
;
(2)求數(shù)列
的前n項和
;
(3)證明:不等式
對任意的
,
都成立.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
滿足
,
是
的前
項的和,并且
.
(1)求數(shù)列
的前
項的和;
(2)證明:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分l2分)已知數(shù)列{a
n}中,a
1=1,a
2=3且2a
n+1=a
n+2+a
n(n∈N
*).數(shù)列{b
n}的前n項和為S
n,其中b
1=-
,b
n+1=-
S
n(n∈N
*).
(1)求數(shù)列{a
n}和{b
n}的通項公式;
(2)若T
n=
+
+…+
,求T
n的表達式
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題16分)
已知公差不為0的等差數(shù)列{
}的前4項的和為20,且
成等比數(shù)列;
(1)求數(shù)列{
}通項公式;(2)設
,求數(shù)列{
}的前n項的和
;
(3)在第(2)問的基礎上,是否存在
使得
成立?若存在,求出所有解;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
規(guī)定一種運算﹠:
﹠
=
,
﹠
﹠
,則
﹠
的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
一支車隊有15輛車,某天依次出發(fā)執(zhí)行運輸任務,第一輛車于下午2時出發(fā),第二輛車于下午2時10分出發(fā),第三輛車于下午2時20分出發(fā),依此類推。假設所有的司機都連續(xù)開車,并都在下午6時停下來休息。
(1)到下午6時最后一輛車行駛了多長時間?
(2)如果每輛車的行駛速度都是60
,這個車隊當天一共行駛了多少千米?
查看答案和解析>>