(本題滿分12分)

已知函數(shù)f(x)=x3+ax2+(a+6)x+b(a,b∈R).

(1)若函數(shù)f(x)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是3,求a,b的值;

(2) 若f(x)為R上的單調(diào)遞增函數(shù),求a的取值范圍.

 

【答案】

解:(1)由函數(shù)f(x)的圖象過原點(diǎn),得b=0, ………………………………1分

又f′(x)=3x2+2ax+(a+6), …………………………………………………3分

f(x)在原點(diǎn)處的切線斜率是3,則a+6=3,所以a=-3. ………………………6分

(2)若f(x)為R上的單調(diào)遞增函數(shù),則f′(x) 在R上恒成立.

即3x2+2ax+(a+6)≥0在R上恒成立,………………………………………8分

因此Δ≤0,有4a2-12(a+6) ≤0    ………………………………………10分

即a2-3a-18 ≤0解得……………………………………………12分

【解析】

試題分析:(Ⅰ)根據(jù)函數(shù)f(x)的圖象過點(diǎn)P(1,2)與函數(shù)圖象在點(diǎn)P處的切線斜率為8,建立關(guān)于a和b的方程組,解之即可;

(Ⅱ)由(Ⅰ)得f'(x),f(x)為R上的單調(diào)遞增函數(shù)則令f'(x)0即可求出a的范圍.

考點(diǎn):本試題主要考查了導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,以及利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識,同時(shí)考查了分析與解決問題的綜合能力,屬于基礎(chǔ)題。

點(diǎn)評:解決該試題的關(guān)鍵對于導(dǎo)數(shù)幾何意義的運(yùn)用和單調(diào)遞增時(shí)要滿足到導(dǎo)函數(shù)恒大于等于零來得到。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案