已知遞增等差數(shù)列前3項(xiàng)的和為,前3項(xiàng)的積為8,
(1)求等差數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和。
(1)(2)

試題分析:本題第(1)問(wèn),要得到等差數(shù)列的通項(xiàng)公式,需要首項(xiàng)和公差,而由前3項(xiàng)的和為,前3項(xiàng)的積為8可得,這個(gè)可解出首項(xiàng)和公差,需要注意的是,由于數(shù)列遞增數(shù)列,則;第(2)問(wèn),在(1)中,已經(jīng)得到數(shù)列的通項(xiàng)公式,把它代入得:,進(jìn)而用錯(cuò)位相減法得到,這種方法常用于求一般數(shù)列的通項(xiàng)公式和前n項(xiàng)和。
解:(1)等差數(shù)列的前三項(xiàng)為,則

解得 

(2)

    (1)
 (2)
(1)


點(diǎn)評(píng):本題主要考查了等差數(shù)列性質(zhì)及通項(xiàng)公式、求和公式的應(yīng)用,屬于基礎(chǔ)性試題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列中,點(diǎn)在直線上,且.
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,,成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列的前項(xiàng)和為,已知.
(1)求通項(xiàng)公式;
(2)若.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列中, 則( )
A.2B.3C.6D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知公差不為零的等差數(shù)列的前項(xiàng)和為,若,則    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足 ,求的通項(xiàng)公式;
(3)求數(shù)列 項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是一個(gè)公差大于0的等差數(shù)列,且滿足.令,記數(shù)列的前項(xiàng)和為,對(duì)任意的,不等式恒成立,則實(shí)數(shù)的最小值是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列中,,則______;設(shè),則數(shù)列的前項(xiàng)和______.

查看答案和解析>>

同步練習(xí)冊(cè)答案