【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),曲線上異于原點(diǎn)的兩點(diǎn),所對(duì)應(yīng)的參數(shù)分別為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)當(dāng)時(shí),直線平分曲線,求的值;

2)當(dāng)時(shí),若,直線被曲線截得的弦長(zhǎng)為,求直線的方程.

【答案】12

【解析】

1)求出直線的方程和曲線的直角坐標(biāo)方程,然后利用直線過(guò)點(diǎn)求出答案;

2)由可算出,然后可設(shè)直線的方程為,然后根據(jù)直線被曲線截得的弦長(zhǎng)為建立方程求解即可.

1)因?yàn)?/span>,所以.

所以直線的方程為.

曲線的方程可化為

因?yàn)橹本平分曲線,所以直線過(guò)點(diǎn),

所以.

2)由題意可知

曲線的方程為

設(shè)直線的方程為,圓心到直線的距離為

因?yàn)?/span>,所以

所以,

所以直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列結(jié)論:在回歸分析中

1)可用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;

2)可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;

3)可用相關(guān)系數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;

4)可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說(shuō)明模型的擬合精度越高.

以上結(jié)論中,正確的是(

A.1)(3B.2)(3C.1)(4D.3)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖統(tǒng)計(jì)了截止到2019年年底中國(guó)電動(dòng)汽車(chē)充電樁細(xì)分產(chǎn)品占比及保有量情況,關(guān)于這5次統(tǒng)計(jì),下列說(shuō)法正確的是(

A.私人類電動(dòng)汽車(chē)充電樁保有量增長(zhǎng)率最高的年份是2018

B.公共類電動(dòng)汽車(chē)充電樁保有量的中位數(shù)是25.7萬(wàn)臺(tái)

C.公共類電動(dòng)汽車(chē)充電樁保有量的平均數(shù)為23.12萬(wàn)臺(tái)

D.2017年開(kāi)始,我國(guó)私人類電動(dòng)汽車(chē)充電樁占比均超過(guò)50%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓)的離心率,左、右焦點(diǎn)分別為,過(guò),分別作兩條相互垂直的直線,分別交橢圓,,四點(diǎn),,的交點(diǎn)為,三角形面積的最大值為1.

1)求橢圓的方程;

2)當(dāng)四邊形的面積最小時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為原點(diǎn),拋物線的準(zhǔn)線與y軸的交點(diǎn)為H,P為拋物線C上橫坐標(biāo)為4的點(diǎn),已知點(diǎn)P到準(zhǔn)線的距離為5.

1)求C的方程;

2)過(guò)C的焦點(diǎn)F作直線l與拋物線C交于A,B兩點(diǎn),若以AH為直徑的圓過(guò)B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】精準(zhǔn)扶貧點(diǎn)用2400元的資金為貧困戶購(gòu)買(mǎi)良種羊羔,共有肉用山羊、毛用綿羊、產(chǎn)奶山羊三種羊羔,價(jià)格均為每只300元,若要求每種羊羔至少買(mǎi)1只,則所有可能的購(gòu)買(mǎi)方案總數(shù)為( )

A.12B.14C.21D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,且經(jīng)過(guò)點(diǎn).

1)求橢圓的方程;

2)直線的斜率為,且與橢圓相交于兩點(diǎn)(異于點(diǎn)),過(guò)的角平分線交橢圓于另一點(diǎn).證明:直線與坐標(biāo)軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,下面結(jié)論正確的是(

A.,,且的最小值為π,則ω=2

B.存在ω(1,3),使得f(x)的圖象向右平移個(gè)單位長(zhǎng)度后得到的圖象關(guān)于y軸對(duì)稱

C.f(x)上恰有7個(gè)零點(diǎn),則ω的取值范圍是

D.f(x)上單調(diào)遞增,則ω的取值范圍是(0,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍;

(2)記兩個(gè)極值點(diǎn)為,且,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案