精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<數學公式)的部分圖象如圖所示,則f(x)的解析式是


  1. A.
    f(x)=sin(3x+數學公式)(x∈R)
  2. B.
    f(x)=sin(2x+數學公式)x∈R
  3. C.
    數學公式
  4. D.
    f(x)=sin(2x+數學公式)(x∈R)
B
分析:首先根據函數圖象得函數的最大值為2,得到A=2,然后算出函數的周期T=π,利用周期的公式,得到ω=2,最后將點(,2)代入,得:2=2sin(2×+φ),結合|φ|<,可得φ=,所以f(x)的解析式是f(x)=sin(2x+).
解答:∵函數圖象經過點(,2)
∴函數的最大值為2,可得A=2
又∵函數的周期T=4(-)=π,
=π,可得ω=2
因此函數解析式為:f(x)=2sin(2x+φ),
再將點(,2)代入,得:2=2sin(2×+φ),
解之得φ=,(k∈Z)
∵|φ|<,∴取k=0,得φ=
所以f(x)的解析式是f(x)=sin(2x+)x∈R
故選B
點評:本題給出了函數y=Asin(ωx+φ)的部分圖象,要確定其解析式,著重考查了三角函數基本概念和函數y=Asin(ωx+φ)的圖象與性質的知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案