【題目】在如圖所示的幾何體中,是邊長(zhǎng)為2的正三角形,平面ABC,平面平面ABC,,且.
(1)若,求證:平面BDE;
(2)若二面角為,求直線CD與平面BDE所成角.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用向量數(shù)量積求出平面BDE法向量,根據(jù)向量垂直坐標(biāo)表示以及線面平行判定定理證明線面平行,
(2)在(1)基礎(chǔ)上利用向量數(shù)量積求出平面BDE以及平面法向量,根據(jù)向量數(shù)量積求出兩法向量夾角,再根據(jù)二面角求出,最后利用空間向量求線面角.
(1)取的中點(diǎn),連接,,
因?yàn)?/span>,,,為的中點(diǎn),所以,。
又因?yàn)槠矫?/span>平面,所以平面,因?yàn)?/span>是邊長(zhǎng)為2的正三角形,所以,;
建立如圖所示的空間直角坐標(biāo)系,
則,,,,,
,,因?yàn)?/span>,所以,。
設(shè)平面的法向量,則
令,所以。
因?yàn)?/span>,所以,
又平面,所以平面。
(2)設(shè),則,。
設(shè)平面的法向量,
則
令,所以。
又平面的法向量,
所以,解得,即知平面的法向量。設(shè)直線與平面所成的角為,而,所以,所以,即直線與平面所成的角為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線P:的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)作直線與拋物線P相交于A,B兩點(diǎn),設(shè),.
(1)求的值;
(2)是否存在常數(shù)a,當(dāng)點(diǎn)M在拋物線P上運(yùn)動(dòng)時(shí),直線都與以MF為直徑的圓相切?若存在,求出所有a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是數(shù)列的前項(xiàng)和,且,,數(shù)列中,,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求的前項(xiàng)和;
(3)證明:對(duì)一切,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓,過(guò)點(diǎn)的直線,分別交于不同的兩點(diǎn)、,直線恒過(guò)點(diǎn)
(1)證明:直線,的斜率之和為定值;
(2)直線,分別與軸相交于,兩點(diǎn),在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)若曲線與曲線在它們的公共點(diǎn)處且有公共切線,求的值;
(2)若存在實(shí)數(shù)使不等式的解集為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,底面是邊長(zhǎng)為2的等邊三角形,點(diǎn)D,E分別是的中點(diǎn).
(1)證明:平面;
(2)若,證明:平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過(guò)點(diǎn),且以,為焦點(diǎn),橢圓的離心率為.
(1)求實(shí)數(shù)的值;
(2)過(guò)左焦點(diǎn)的直線與橢圓相交于、兩點(diǎn),為坐標(biāo)原點(diǎn),問(wèn)橢圓上是否存在點(diǎn),使線段和線段相互平分?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com