【題目】選擇合適的抽樣方法抽樣,寫出抽樣過程.

1)有甲廠生產(chǎn)的30個籃球,其中一箱21個,另一箱9個,抽取3個;

2)有30個籃球,其中甲廠生產(chǎn)的有21個,乙廠生產(chǎn)的有9個,抽取10.

【答案】1)抽簽法.見解析(2)分層隨機抽樣.見解析

【解析】

1)總體容量較小,用抽簽法抽樣,根據(jù)抽簽法的抽樣過程得到答案.

2)總體由差異明顯的兩個層次組成,需選用分層隨機抽樣,分別抽取甲廠生產(chǎn)的籃球7個,乙廠生產(chǎn)的籃球3個得到答案.

1)總體容量較小,用抽簽法.

①將30個籃球編號,編號為00,01,,29;

②將以上30個編號分別寫在完全一樣的小紙條上,揉成小球,制成號簽;

③把號簽放入一個不透明的袋子中,充分?jǐn)嚢瑁?/span>

④從袋子中逐個抽取3個號簽,并記錄上面的號碼;

⑤找出和所得號碼對應(yīng)的籃球即可得到樣本.

2)總體由差異明顯的兩個層次組成,需選用分層隨機抽樣.

①確定抽取個數(shù).因為,所以甲廠生產(chǎn)的籃球應(yīng)抽取(個),乙廠生產(chǎn)的籃球應(yīng)抽取(個);

②用抽簽法分別抽取甲廠生產(chǎn)的籃球7個,乙廠生產(chǎn)的籃球3個,這些籃球便組成了我們要抽取的樣本.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)若函數(shù)存在5個零點,則實數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用節(jié)中100戶居民用戶的月均用水量的調(diào)查數(shù)據(jù),計算樣本數(shù)據(jù)的平均數(shù)和中位數(shù),并據(jù)此估計全市居民用戶月均用水量的平均數(shù)和中位數(shù).

9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0

2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2. 0 10.5

2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9

2.3 10.0 16.7 12.0 12.4 7.8 5.2 13.6 2.6 22.4

3.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.0

22.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.9

5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7

5.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.3

5.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8

7.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,為等邊三角形,,平面平面,點的中點,連接.

(1)求證:平面PEC平面EBC;

(2)若,且二面角的平面角為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長方形中,的中點,為線段上一動點.現(xiàn)將沿折起,形成四棱錐.

(1)若重合,且(如圖2).證明:平面;

(2)若不與重合,且平面平面 (如圖3),設(shè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院批準(zhǔn)從2009年起,將每年8月8日設(shè)置為“全民健身日”,為響應(yīng)國家號召,各地利用已有土地資源建設(shè)健身場所.如圖,有一個長方形地塊,邊,.地塊的一角是草坪(圖中陰影部分),其邊緣線是以直線為對稱軸,以為頂點的拋物線的一部分.現(xiàn)要鋪設(shè)一條過邊緣線上一點的直線型隔離帶分別在邊,上(隔離帶不能穿越草坪,且占地面積忽略不計),將隔離出的△作為健身場所.則△的面積為的最大值為____________(單位:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形是直角梯形,,且是等邊三角形,,的中點.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,,是它的兩個頂點,直線與直線相交于點,與橢圓相交于,兩點.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若,求k的值;

(Ⅲ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)pf(x)在區(qū)間(1,+∞)上是減函數(shù);q:若x1,x2是方程x2ax20的兩個實根,則不等式m25m3≥|x1x2|對任意實數(shù)a[1,1]恒成立.若p不正確,q正確,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案