【題目】在如圖所示的幾何體中, , , , , ,二面角的大小為.
(1)求證: 平面;
(2)求平面與平面所成的角(銳角)的大;
(3)若為的中點(diǎn),求直線與平面所成的角的大小.
【答案】(1)見解析;(2);(3)
【解析】試題分析:(Ⅰ)由已知可得AC⊥CD,AC⊥CB,即∠BCD為二面角B﹣AC﹣E的平面角,即∠BCD=60°,求解三角形可得BD⊥DC,再由線面垂直的判定可得AC⊥平面BCD,得到AC⊥BD,進(jìn)一步得到BD⊥平面ACDE;
(Ⅱ)由BD⊥平面ACDE,得BD⊥DC,BD⊥DE,可得DB,DC,DE兩兩垂直,分別以DB,DC,DE所在直線為x,y,z軸建立空間直角坐標(biāo)系,求出所用點(diǎn)的坐標(biāo),得到平面BAE與平面BCD的一個(gè)法向量,由兩法向量所成角的余弦值可得平面BCD與平面BAE所成的角;
(Ⅲ)若F為AB的中點(diǎn),由(II)可得,進(jìn)一步得到,由已知可得平面BDE的一個(gè)法向量為,由與所成角的余弦值的絕對(duì)值可得直線EF與平面BDE所成角的大。
試題解析:
(1)因?yàn)?/span>,則, ,
所以為二面角的平面角,即,
在中, , , ,
所以,所以,即,
由, ,且,可知平面,
又平面,所以,
又因?yàn)?/span>, 平面, 平面,
所以平面.
(2)由平面得, ,又,即, , 兩兩垂直,
則以, , 分別為軸, 軸, 軸的正方向建立空間直角坐標(biāo)系,如圖所示.
由(I)知, 則, , ,
由得,
依題意, ,
設(shè)平面的一個(gè)法向量為,
則,即,不妨設(shè),可得,
由平面可知平面的一個(gè)法向量為
設(shè)平面與平面所成的角(銳角)為,
所以,于是,
所以平面與平面所成的角(銳角)為.
(3)若為的中點(diǎn),則由(II)可得,所以,
依題意平面,可知平面的一個(gè)法向量為,
設(shè)直線與平面所成角為,則
,所以直線與平面所成角的大小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線與正方形: 的邊界相切.
(1)求的值;
(2)設(shè)直線交曲線于,交于,是否存在這樣的曲線,使得, , 成等差數(shù)列?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線和曲線有三個(gè)公共點(diǎn),求以這三個(gè)公共點(diǎn)為頂點(diǎn)的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和曲線的極坐標(biāo)方程;
(2)曲線分別交直線和曲線于點(diǎn),求的最大值及相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)現(xiàn)有6名包含在內(nèi)的男志愿者和4名包含在內(nèi)的女志愿者,這10名志愿者要參加第十三屆全運(yùn)會(huì)支援服務(wù)工作,從這些人中隨機(jī)抽取5人參加田賽服務(wù)工作,另外5人參加徑賽服務(wù)工作.
(1)求參加田賽服務(wù)工作的志愿者中包含但不包含的概率;
(2)設(shè)表示參加徑賽服務(wù)工作的女志愿者人數(shù),求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過函數(shù)性質(zhì)的學(xué)習(xí),我們知道:“函數(shù)的圖象關(guān)于軸成軸對(duì)稱圖形”的充要條件是“為偶函數(shù)”.
(1)若為偶函數(shù),且當(dāng)時(shí),,求的解析式,并求不等式的解集;
(2)某數(shù)學(xué)學(xué)習(xí)小組針對(duì)上述結(jié)論進(jìn)行探究,得到一個(gè)真命題:“函數(shù)的圖象關(guān)于直線成軸對(duì)稱圖形”的充要條件是“為偶函數(shù)”.若函數(shù)的圖象關(guān)于直線對(duì)稱,且當(dāng)時(shí),.
(i)求的解析式;
(ii)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,已知是邊長(zhǎng)為2的正方形, 為正三角形, 分別為的中點(diǎn), 且, .
(1)求證: 平面;
(2)求證: 平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線AM//平面A1DE,則動(dòng)點(diǎn)M 的軌跡長(zhǎng)度為( )
A. B. π C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線和曲線的直角坐標(biāo)方程,并指明曲線的形狀;
(2)設(shè)直線與曲線交于兩點(diǎn), 為坐標(biāo)原點(diǎn),且,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com