下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).

x
3
4
5
6
y
2.5
3
4
4.5
(1)請畫出上表數(shù)據(jù)的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=bx+a.
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

(1) 如圖

(2) =0.7x+0.35    (3) 19.65

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)有兩個分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如下表:
甲廠:

分組
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
頻數(shù)
 
12
 
63
 
86
 
182
 
92
 
61
 
4
 
乙廠:
分組
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
頻數(shù)
 
29
 
71
 
85
 
159
 
76
 
62
 
18
 
 
(1)試分別估計兩個分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;
(2)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為“兩個分廠生產(chǎn)的零件的質(zhì)量有差異”?
 
 
甲廠
 
乙廠
 
合計
 
優(yōu)質(zhì)品
 
 
 
 
 
 
 
非優(yōu)質(zhì)品
 
 
 
 
 
 
 
合 計
 
 
 
 
 
 
 
附:
P(χ2≥x0)
 
0.05
 
0.01
 
x0
 
3.841
 
6.635
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組:,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.


(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加的次預(yù)賽成績記錄如下: 
甲                    乙               
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(3)①求甲、乙兩人的成績的平均數(shù)與方差,②若現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,
根據(jù)你的計算結(jié)果,你認(rèn)為選派哪位學(xué)生參加合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

衡水某中學(xué)對高二甲、乙兩個同類班級進(jìn)行“加強‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓(xùn)練),乙班為對比班(常規(guī)教學(xué),無額外訓(xùn)練),在試驗前的測試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗結(jié)束后,統(tǒng)計幾次數(shù)學(xué)應(yīng)用題測試的平均成績(均取整數(shù))如下表所示:

 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人數(shù))
3
6
11
18
12
乙班
(人數(shù))
4
8
13
15
10
現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(1)試分別估計兩個班級的優(yōu)秀率.
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷“加強‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”是否有幫助?
 
優(yōu)秀人數(shù)
非優(yōu)秀人數(shù)
總計
甲班
 
 
 
乙班
 
 
 
總計
 
 
 
參考公式及數(shù)據(jù):K2=,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為調(diào)查甲、乙兩校高三年級學(xué)生某次聯(lián)考數(shù)學(xué)成績情況,用簡單隨機抽樣,從這兩校中各抽取30名高三年級學(xué)生,以他們的數(shù)學(xué)成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.

(1)若甲校高三年級每位學(xué)生被抽取的概率為0.05,求甲校高三年級學(xué)生總?cè)藬?shù),并估計甲校高三年級這次聯(lián)考數(shù)學(xué)成績的及格率(60分及60分以上為及格);
(2)設(shè)甲、乙兩校高三年級學(xué)生這次聯(lián)考數(shù)學(xué)平均成績分別為1,2,估計12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù).
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從穩(wěn)定性的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某次數(shù)學(xué)考試中,抽查了1000名學(xué)生的成績,得到頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.

(1)下表是這次抽查成績的頻數(shù)分布表,試求正整數(shù)的值;

區(qū)間
[75,80)
[80,85)
[85,90)
[90,95)
[95,100]
人數(shù)
50
a
350
300
b
(2)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績進(jìn)行分析,求抽取成績?yōu)閮?yōu)秀的學(xué)生人數(shù);
(3)在根據(jù)(2)抽取的40名學(xué)生中,要隨機選取2名學(xué)生參加座談會,記其中成績?yōu)閮?yōu)秀的人數(shù)為X,求X的分布列與數(shù)學(xué)期望(即均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)兩種元件,其質(zhì)量按測試指標(biāo)劃分為:大于或等于7.5為正品,小于7.5為次品.現(xiàn)從一批產(chǎn)品中隨機抽取這兩種元件各5件進(jìn)行檢測,檢測結(jié)果記錄如下:


7
7
7.5
9
9.5

6

8.5
8.5

由于表格被污損,數(shù)據(jù)看不清,統(tǒng)計員只記得,且兩種元件的檢測數(shù)據(jù)的平均值相等,方差也相等.
(Ⅰ)求表格中的值;
(Ⅱ)若從被檢測的5件種元件中任取2件,求2件都為正品的概率.

查看答案和解析>>

同步練習(xí)冊答案