【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a+b+c=16.
(1)若a=4,b=5,求cosC的值;
(2)若sinA+sinB=3sinC,且△ABC的面積S=18sinC,求a和b的值.
【答案】
(1)解:由題意可知c=16﹣(a+b)=7
由余弦定理得
(2)解:由 ,
可得 ,
化簡得sinA+sinAcosB+sinB+sinBcosA=4sinC
即sinA+sinB+sin(A+B)=4sinC,
sinA+sinB=3sinC即a+b=3c
又a+b+c=16∴a+b=12,
由于
∴ ,即a=b=6
【解析】(1)求出c,根據(jù)余弦定理求出C的余弦值即可;(2)根據(jù)倍角公式以及三角形的面積公式得到關(guān)于a,b的方程組,解出即可.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C對(duì)應(yīng)的邊長分別為a、b、c.已知acosB﹣ b= ﹣ .
(1)求角A;
(2)若a= ,求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用秦九韶算法求多項(xiàng)式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,當(dāng)x=3時(shí)的值,并將結(jié)果化為8進(jìn)制數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的四個(gè)頂點(diǎn)組成的四邊形的面積為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)若橢圓的下頂點(diǎn)為,如圖所示,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過橢圓的右焦點(diǎn)的直線垂直于,且與交于兩點(diǎn),與交于點(diǎn),四邊形和的面積分別為.求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com