從一批含有6件正品,3件次品的產(chǎn)品中,有放回地抽取2次,每次抽取1件,設(shè)抽得次品數(shù)為X,則 =____________.
解:因為從一批含有6件正品,3件次品的產(chǎn)品中,有放回地抽取2次,每次抽取1件,設(shè)抽得次品數(shù)為X,則 =
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某食品加工廠甲,乙兩個車間包裝小食品,在自動包裝傳送帶上每隔30分鐘抽取一袋食品,稱其重量并將數(shù)據(jù)記錄如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品廠采用的是什么抽樣方法(不必說明理由)?
(2)根據(jù)數(shù)據(jù)估計這兩個車間所包裝產(chǎn)品每袋的平均質(zhì)量;
(3)分析哪個車間的技術(shù)水平更好些?
附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

QQ先生的魚缸中有7條魚,其中6條青魚和1條黑魚,計劃從當(dāng)天開始,每天中午從該魚缸中抓出1條魚(每條魚被抓到的概率相同)并吃掉.若黑魚未被抓出,則它每晚要吃掉1條青魚(規(guī)定青魚不吃魚).
(Ⅰ)求這7條魚中至少有6條被QQ先生吃掉的概率;
(Ⅱ)以表示這7條魚中被QQ先生吃掉的魚的條數(shù),求的分布列及其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(12分)設(shè)是一個離散型隨機變量,其分布列如下表,試求隨機變量的期望與方差
ξ
-1
0
1
P

1-2q[
q2
   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在第9屆校園文化藝術(shù)節(jié)棋類比賽項目報名過程中,我校高二(2)班共有16名男生和14名女生預(yù)報名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會圍棋.
(I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:
 
會圍棋
不會圍棋
總計

 
 
 

 
 
 
總計
 
 
30
并回答能否在犯錯的概率不超過0.10的前提下認為性別與會圍棋有關(guān)?
參考公式:其中n=a+b+c+d
參考數(shù)據(jù):

0.40
0.25
0.10
0.010

0.708
1.323
2.706
6.635
(Ⅱ)若從會圍棋的選手中隨機抽取3人成立該班圍棋代表隊,則該代表隊中既有男又
有女的概率是多少?
(Ⅲ)若從14名女棋手中隨機抽取2人參加棋類比賽,記會圍棋的人數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;
(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某學(xué)校隨機抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)所需時間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(Ⅰ)求直方圖中的值;
(Ⅱ)如果上學(xué)所需時間不少于1小時的學(xué)生可申請在學(xué)校住宿,
請估計學(xué)校600名新生中有多少名學(xué)生可以申請住宿;
(Ⅲ)從學(xué)校的新生中任選4名學(xué)生,這4名學(xué)生中上學(xué)所需時間
少于20分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中新生上學(xué)所需時間少于20分鐘的頻率作為每名學(xué)生上學(xué)所需時間少于20分鐘的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如果甲乙兩個乒乓球選手進行比賽,而且他們在每一局中獲勝的概率都是,規(guī)定使用“七局四勝制”,即先贏四局者勝.
(1)試分別求甲打完4局、5局才獲勝的概率;
(2)設(shè)比賽局數(shù)為ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.若h~B(2, p),且,則(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案