【題目】A,B,C是圓O上不同的三點,線段CO與線段AB交于點D,若 =λ +μ (λ∈R,μ∈R),則λ+μ的取值范圍是( )
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中點.
(Ⅰ)求證:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(3)若函數(shù),其中為奇函數(shù), 為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面立角坐標系中,過點的圓的圓心在軸上,且與過原點傾斜角為的直線相切.
(1)求圓的標準方程;
(2)點在直線上,過點作圓的切線、,切點分別為、,求經(jīng)過、、、四點的圓所過的定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x﹣1|.
(Ⅰ)若f(x)≥|m﹣1|恒成立,求實數(shù)m的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實數(shù)a,b滿足a2+b2=M,證明:a+b≥2ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若三角形三邊的長度為連續(xù)的三個自然數(shù),則稱這樣的三角形為“連續(xù)整邊三角形”。下列說法正確的是( )
A. “連續(xù)整邊三角形”只能是銳角三角形
B. “連續(xù)整邊三角形”不可能是鈍角三角形
C. 若“連續(xù)整邊三角形”中最大角是最小角的2倍,則這樣的三角形有且僅有1個
D. 若“連續(xù)整邊三角形”中最大角是最小角的2倍,則這樣的三角形可能有2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com