【題目】某展覽館用同種規(guī)格的木條制作如圖所示的展示框,其內(nèi)框與外框均為矩形,并用木條相互連結(jié),連結(jié)木條與所連框邊均垂直.水平方向的連結(jié)木條長均為8cm,豎直方向的連結(jié)木條長均為4cm,內(nèi)框矩形的面積為3200cm2 . (不計木料的粗細與接頭處損耗)

(1)如何設(shè)計外框的長與寬,才能使外框矩形面積最。
(2)如何設(shè)計外框的長與寬,才能使制作整個展示框所用木條最少?

【答案】
(1)解:設(shè)展示框外框的長為xcm,寬為ycm,則內(nèi)框長為(x﹣16)cm,寬為(y﹣8)cm,由題意x>16,y>8,因為內(nèi)框的面積為3200cm2,所以(x﹣16)(y﹣8)=3200,所以 ,外框面積為S=xy=8x+ =3328+8(x﹣16)+ ,因為x>16,所以x﹣16>0,所以S≥3328+2 =3328+1280=4608,當且僅當8(x﹣16)= 即x=96時等號成立,

所以外框的長與寬分別是96cm,48cm時,才能使外框矩形面積最小


(2)解:由(1)可知,所用木條的總長度為4(x+y)=4(x+8+ )=4(x﹣16+ +24)≥4(2 +24)=96+320 ,當且僅當x﹣16= 即x=16+40 ,y=8+40 時等號成立;

所以外框的長與寬分別是(16+40 )cm,(8+40 )cm時,才能使制作整個展示框所用木條最少


【解析】(1)設(shè)展示框外框的長為xcm,寬為ycm,則內(nèi)框長為(x﹣16)cm,寬為(y﹣8)cm,利用x,y表示面積,列出面積表達式,變形,利用基本不等式求其最小值;(2)利用(1)得到木條的長度表達式,變形,結(jié)合基本不等式求最小值.
【考點精析】解答此題的關(guān)鍵在于理解基本不等式在最值問題中的應(yīng)用的相關(guān)知識,掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知4sinA=4cosBsinC+bsin2C,且C≠
(1)求c;
(2)若C= ,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣3|﹣|x﹣a|.
(1)當a=2時,解不等式f(x)≤﹣ ;
(2)若存在實數(shù)x,使得不等式f(x)≥a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn},Sn為數(shù)列{an}的前n項和,向量 =(1,bn), =(an﹣1,Sn),
(1)若bn=2,求數(shù)列{an}通項公式;
(2)若bn= ,a2=0.
①證明:數(shù)列{an}為等差數(shù)列;
②設(shè)數(shù)列{cn}滿足cn= ,問是否存在正整數(shù)l,m(l<m,且l≠2,m≠2),使得cl、c2、cm成等比數(shù)列,若存在,求出l、m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),其中, 是自然對數(shù)的底數(shù).

(Ⅰ)若上的增函數(shù),求的取值范圍;

(Ⅱ)若,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220.240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.

(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)y=f(x)對任意的x都滿足f(x+1)=﹣f(x),當﹣1≤x<1時,f(x)=x3 , 若函數(shù)g(x)=f(x)﹣loga|x|至少6個零點,則a取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列an}的前n項和為Sn , a1=1,a2=2,且點(Sn , Sn+1)在直線y=tx+1上.
(1)求Sn及an;
(2)若數(shù)列{bn}滿足bn= (n≥2),b1=1,數(shù)列{bn}的前n項和為Tn , 求證:當n≥2時,Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設(shè)三角形ABC的頂點分別為A(0,a),B(b,0),C(c,0),點P(0,p)在線段AO上(異于端點),設(shè)a,b,c,p均為非零實數(shù),直線BP,CP分別交AC,AB于點E,F(xiàn),一同學已正確算的OE的方程:( )x+( )y=0,請你求OF的方程:()x+( )y=0.

查看答案和解析>>

同步練習冊答案