已知F1、F2為雙曲線C:
x2
16
-
y2
20
=1
的左、右焦點,P在雙曲線上,且PF2=5,則cos∠PF1F2______.
由F1、F2為雙曲線C:
x2
16
-
y2
20
=1
的左、右焦點,P在雙曲線上,
則||PF1|-|PF2||=2a=8,
又由PF2=5,可得PF1=13,
在△F1PF2中,F(xiàn)1F2=2
16+20
=12,
可得△F1PF2為直角三角形,
故cos∠PF1F2=
F1F2
F1P
=
12
13

故答案為:=
12
13
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,已知焦點在x軸上的雙曲線的漸近線方程為x±2y=0,則該雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求雙曲線16x2-9y2=-144的實軸長、焦點坐標(biāo)、離心率和漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

【文科】如果雙曲線的焦距等于兩條準(zhǔn)線間距離的4倍,則此雙曲線的離心率為( 。
A.4B.
2
C.
1
2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y2=4x的焦點為F,準(zhǔn)線為l,l與雙曲線
x2
a2
-y2=1(a>0)
交于A,B兩點,若△FAB為直角三角形,則雙曲線的離心率是(  )
A.
3
B.
6
C.2D.
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,右焦點為F,點A(0,b),線段AF交雙曲線于點B,且
AB
=2
BF
,則雙曲線的離心率為( 。
A.
10
2
B.
10
C.
5
2
D.
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知P是以F1,F(xiàn)2為焦點的雙曲線
x2
a2
-
y2
b2
=1
上一點,
PF1
PF2
=0
,且tan∠PF1F2=
1
2
,則此雙曲線的漸近線方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線x2-
y2
16
=1
上一點P到它的一個焦點的距離等于4,那么點P到另一個焦點的距離等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點M是拋物線上的一點,F(xiàn)為拋物線的焦點,A在圓C:上,則的最小值為__________.

查看答案和解析>>

同步練習(xí)冊答案