【題目】在銳角△ABC中,分別為A、B、C所對的邊,且

(1)確定角C的大;

(2)若c,求△ABC周長的取值范圍.

【答案】(1)C=60°;(2)(+3,].

【解析】

1)利用正弦定理化簡已知條件,求得的值,根據(jù)三角形是銳角三角形求得的大小.2)利用正弦定理將轉(zhuǎn)化為角度來表示,求得三角形周長的表達(dá)式,利用三角函數(shù)求取值范圍的方法,求得三角形周長的取值范圍.

解:(1)已知ab、c分別為AB、C所對的邊,

a2csinA

sinA2sinCsinA,又sinA≠0,則sinC=,

C=60°C=120°,

∵△ABC為銳角三角形,∴C=120°舍去!C=60°

(2)∵c=,sinC=

∴由正弦定理得:,

a=2sinA,b=2sinB,又A+B=π-C=,

B=-A

a+b+c=2sinA+sinB+=2 [sinA+sin-A]+

=2sinA+sincosA-cossinA+

=2sinAcos+cosAsin+=2sinA++,

∵△ABC是銳角三角形,

<A<,

sinA+≤1,

則△ABC周長的取值范圍是(+3,].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生的學(xué)習(xí)情況,一次測試中,科任老師從本班中抽取了n個學(xué)生的成績(滿分100分,且抽取的學(xué)生成績均在內(nèi))進(jìn)行統(tǒng)計(jì)分析.按照,,,,的分組作出頻率分布直方圖和頻數(shù)分布表.

頻數(shù)分布表

x

4

10

12

8

4

1)求n,ax的值;

2)在選取的樣本中,從低于60分的學(xué)生中隨機(jī)抽取兩名學(xué)生,試問這兩名學(xué)生在同一組的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)=.

(1)求的最大值:

(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且sin(α+β)=3sin(α-β).

(1)若tanα=2,求tanβ的值;

(2)求tan(α-β)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,判斷上的單調(diào)性并證明;

2)若對任意,不等式恒成立,求的取值范圍;

3)討論函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2008年至2016年糧食產(chǎn)量的部分?jǐn)?shù)據(jù)如下表:

(1)求該地區(qū)2008年至2016年的糧食年產(chǎn)量與年份之間的線性回歸方程;

(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產(chǎn)量的變化情況,并預(yù)測該地區(qū) 2018年的糧食產(chǎn)量.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,求的最大值和最小值;

2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在是增函數(shù),其圖像如圖所示.

(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案