(本小題滿分12分)

         在全球金融風(fēng)暴的背景下,某政府機構(gòu)調(diào)查了某地工薪階層10000人的月工資收入,并把調(diào)查結(jié)果畫成如圖所示的頻率分布直方圖,請將頻率當(dāng)作概率解答以下問題。

   (I)為了了解工薪階層對月工資收入的滿意程度,要用分層抽樣方法從所調(diào)查的10000人中抽出100人作電話詢訪,則在(元)月工資收入段應(yīng)抽出多少人?

 
   (II)為刺激消費,政府計劃給該地所有工薪階層的人無償發(fā)放購物消費券,方法如下:月工資不多于2000元的每人可領(lǐng)取5000元的消費券,月工資在(元)間的每人可領(lǐng)取2000元的消費券,月工資多于3500元的每人可領(lǐng)取1000元的消費券。用隨機變量ξ表示該地某一工薪階層的人可領(lǐng)取的消費券金額,求ξ的分布列與期望值。

解:(1)由直方圖可得(元)月收入段共有

人,

按分層抽樣應(yīng)抽出人   ………………5分

   (II)根據(jù)圖表,某一工薪階層的人可領(lǐng)取的消費券金額,對應(yīng)的概率分別是0.3,0.65,0.05,其分布列如下:

ξ

5000

2000

1000

P

0.3

0.65

0.05

                          ……………………10分

期望值

………………11分

答:略   ………………………………………………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案